# MS4630B Network Analyzer Operation Manual Vol. 2 Remote Operation

## **Fourth Edition**

To ensure that the equipment is used safely, read the "For Safety" in the MS4630B Operation Manual Vol.1 first.

Keep this manual with the equipment.

# **ANRITSU CORPORATION**

MS4630B Network Analyzer Vol. 2 Remote Operation

Operation Manual

19 October 1998 (First Edition)

3 February 2003 (Fourth Edition)

Copyright © 1998-2003, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the publisher.

The contents of this manual may be changed without prior notice. Printed in Japan

# **About This Manual**

### Organization of this manual

The manual of this unit is organized in the following two parts (Vol. 1 and Vol. 2).



Panel Operations (Vol. 1): How to operate the panel of this unit is explained in detail.

Remote Operations (Vol. 2):This part is organized in GPIB Control and PTA Control.GPIB Control explains about the GPIB commands.PTA Control explains about the PTA operations and commands.

# **Remote Operations** Operation Manual

- 1. MS4630B Network Analyzer Remote Operations (GPIB Control) Operation Manual
- 2. MS4630B Network Analyzer Remote Operations (PTA Control) Operation Manual

MS4630B Network Analyzer Remote Operations (GPIB Control) Operation Manual

# Contents

| Section 1 Outline |                                                                                   | 1-1  |
|-------------------|-----------------------------------------------------------------------------------|------|
| 1.1               | Overview                                                                          | 1-2  |
| Sect              | ion 2 Connection Method                                                           | 2-1  |
| 2.1               | Connection Through GPIB Cable                                                     | 2-2  |
| 2.2<br>2.3        | Setting the GPIB Interface Conditions<br>Connection with External Devices through | 2-3  |
|                   | RS-232C Cable                                                                     | 2-4  |
| 2.4               | Connection Diagram of RS-232C Interface Signals                                   | 2-5  |
| 2.5               | Setting the RS-232C Interface Conditions                                          | 2-6  |
| Sect              | ion 3 Device Message Format                                                       | 3-1  |
| 3.1               | Overview                                                                          | 3-2  |
| Sect              | ion 4 Status structure                                                            | 4-1  |
| 4.1               | IEEE488.2 Standard Status Model                                                   | 4-2  |
| 4.2               | Status Byte (STB) Register                                                        | 4-4  |
| 4.3               | Service Request (SRQ) Enable Operation                                            | 4-7  |
| 4.4               | Standard Event Status Register                                                    | 4-8  |
| 4.5<br>4.6        | Extended Event Status Register<br>How to Synchronize between Measuring            | 4-10 |
|                   | Instrument and Controller                                                         | 4-13 |
| Sect              | ion 5 Initial Setting                                                             | 5-1  |
| 5.1               | Bus Initialization by IFC Statement                                               | 5-3  |
| 5.2               | Initialization for Message Exchange by DCL and                                    |      |
|                   | SDC Bus Commands                                                                  | 5-4  |
| 5.3               | Device Initialization by the *RST Command                                         | 5-5  |
| 5.4               | Device Initialization by the INI Command                                          | 5-6  |
| 5.5               | Device Condition during Power-on                                                  | 5-7  |

## Section 6 List of Device Messages

| Initialization -PRESET                 | 6-6  |
|----------------------------------------|------|
| Measurement channel -MENU              | 6-6  |
| Measuring port -MEAS                   | 6-6  |
| Impedance measurement -SYSTEM          | 6-6  |
| Measuring format -FORMAT               | 6-7  |
| Frequency -FREQUENCY, SPAN             | 6-8  |
| Waveform averaging/smoothing -AVG      | 6-9  |
| Sweep control -SWEEP                   | 6-10 |
| Output/input -OUT/INPUT                | 6-12 |
| Calibration -CALIBRATION               | 6-15 |
| Waveform display scale -SCALE          | 6-17 |
| Trace (waveform) -TRACE                | 6-19 |
| Marker -MKR                            | 6-21 |
| Marker function-FCTN                   | 6-23 |
| Filter analysis function -FILTER       | 6-24 |
| Resonator analysis function -RESONATOR | 6-26 |
| Limit test function -LIMIT             | 6-28 |
| Hardcopy/copy control -COPY/COPY CONT  | 6-30 |
| SAVE/RECALL -SAVE/RECALL               | 6-31 |
| Title -SAVE/RECALL                     | 6-33 |
| Clock -SYSTEM                          | 6-33 |
| Display color setting -SYSTEM          | 6-33 |
| Back light -BACK LIGHT                 | 6-34 |
| РТА -РТА                               | 6-34 |
| Trace data/normalize data read format  | 6-35 |
| Access channel selection               | 6-35 |
| Data table write protect               | 6-35 |
| Trace data read and write              | 6-36 |
| Normalize data read and write          | 6-37 |
| Frequency table data read and write    | 6-38 |
| Level table data read and write        | 6-39 |
| RBW table data read and write          | 6-40 |
| User wait table data read and write    | 6-40 |
| Common commands                        | 6-41 |
| GPIB dedicated command                 | 6-44 |
| Drawing-related command                | 6-45 |
| Arithmetic function                    | 6-48 |
|                                        |      |

| S | ecti       | on 7 Reading Sweep Control/                                            |          |
|---|------------|------------------------------------------------------------------------|----------|
|   | Mea        | asurement Data                                                         | 7-1      |
|   | 7.1        | Overview                                                               | 7-2      |
|   | 7.2        | Sweep Start Commands and Sweep Condition                               |          |
|   |            | (Sweep End) Detection                                                  | 7-2      |
|   | 7.3        | Reading Measurement Data                                               | 7-4      |
| S | ecti       | on 8 Writing and Reading                                               |          |
|   | Mea        | asurement Condition Data Table                                         | 8-1      |
|   | 8.1        | Overview of Measurement Condition Data Table                           | 8-2      |
|   | 8.2        | Device Messages for Writing and Reading                                | 8-3      |
|   | 8.3        | Procedure for Writing Data to Data Tables                              | 8-4      |
|   | 8.4        | Procedure for Reading Data from Data Tables                            | 8-5      |
| S | ecti       | on 9 Details of Other Device Messages                                  | 9-1      |
|   | 9.1        | Group Delay Measurement Function                                       | 9-2      |
| A | ppe<br>Set | endix A Device-specific Initial ting/List of Initialization Conditions | A-1      |
| A | ppe        | endix B ASCII Code List                                                | B-1      |
| A | ppe        | endix C Comparison Table for                                           |          |
|   | GP         | B Commands of Controllers                                              | C-1      |
|   |            |                                                                        | <u> </u> |

# **Section 1 Outline**

This chapter gives an outline of remote control and describes a system upgrade example.

| 1.1 | Overview |                                           |     |
|-----|----------|-------------------------------------------|-----|
|     | 1.1.1    | Remote control function                   | 1-2 |
|     | 1.1.2    | Interface port purpose                    | 1-2 |
|     | 1.1.3    | System upgrade example using GPIB/RS-232C | 1-3 |
|     | 1.1.4    | GPIB specification                        | 1-5 |
|     | 1.1.5    | RS-232C specification                     | 1-6 |
|     |          |                                           |     |

### Section 1 Outline

## 1.1 Overview

Measurements can be automated by combining the MS4630B Network Analyzer with an external controller (such as a host computer or PC). For this purpose, this unit has the GPIB interface bus (IEEE std 488.2-1987) and RS-232C interface port: option 02.

### 1.1.1 Remote control function

This unit has the following remote control function and functions related to the remote control.

- (1) Controlling the measurement functions except part of the functions such as the power switch and the LOCAL key
- (2) Reading the set conditions and measured values
- (3) Setting the RS-232C interface conditions from the panel
- (4) Setting the GPIB interface conditions from the panel
- (5) Selecting the purposes of the interface port from the panel
- (6) Configuring an automatic measurement system in combination with PC or other measuring instruments.

### 1.1.2 Interface port purpose

This unit has, as an interface port with an external device, the GPIB interface as a standard feature, and optionally the RS-232C interface (option 02) and parallel (Centro) interface (option 02). The purpose of these interface ports are showed as follows.

Connection with an external controller: Select from GPIB/RS-232C Connection port with a printer: Select from GPIB/RS-232C/Centro Connection port with an external device controlled from PTA: Select from GPIB/RS-232C/Centro

## 1.1.3 System upgrade example using GPIB/RS-232C

### (1) Standalone system (part 1)

Waveforms measured by this unit are output to the printer.



### (2) Standalone system (part 2)

Another measuring instrument and the printer are controlled from PTA. The same interface cannot be selected for the connection port with the printer and that for the external device controlled from PTA.



### (3) Host computer control (part 1)

The measuring instrument is controlled automatically/remotely from the computer.



### Section 1 Outline

### (4) Host computer control (part 2)

The measuring instrument is controlled automatically/remotely from the computer, and measured waveforms are output to the printer. The same interface cannot be selected for the connection port of the external controller and that of the printer.



### (5) Host computer control (part 3)

The measuring instrument is controlled automatically/remotely from the computer, and measured waveforms are output to the printer. PTA programs are executed from the computer. The same interface cannot be selected for the connection port of the external controller, that of the printer, and that of the external device controlled from PTA.



## 1.1.4 GPIB specification

The following shows the GPIB specification of this unit.

| Item               | Specified value and supplementary explanation                                 |
|--------------------|-------------------------------------------------------------------------------|
| Function           | Complying with IEEE488.2                                                      |
|                    | This unit is, as a device, controlled by an external controller               |
|                    | (excluding the power switch).                                                 |
|                    | This unit controls, as a controller, an external device (such as a printer).  |
| Interface function | SH1 : All source handshake functions present                                  |
|                    | Used for data send timing                                                     |
|                    | AH1 : All acceptor handshake functions present                                |
|                    | Used for data receive timing                                                  |
|                    | T6 : Basic talker function and serial polling functions present. No talk-only |
|                    | function. Talker release function by MLA present.                             |
|                    | L4 : Basic listener function present. No listen-only function. Listener       |
|                    | release function by MLA present.                                              |
|                    | SR1 : All functions of Service Request and Status Byte present                |
|                    | RL1 : All remote/local functions present                                      |
|                    | Local lockout function present                                                |
|                    | PP0 : No parallel polling function                                            |
|                    | DC1 : All device clear functions present                                      |
|                    | DT1 : Device trigger function present                                         |
|                    | C1 : System controller function present                                       |
|                    | C2 : IFC sending present                                                      |
|                    | C3 : REN sending function present                                             |
|                    | C4 : Response to SRQ present                                                  |
|                    | C28 : Interface message sending present                                       |
|                    | E2 : Try state output                                                         |

### Section 1 Outline

## 1.1.5 RS-232C specification

The following shows the specification of RS-232C (option 02) of this unit.

| Item                         | Specified value                                                 |
|------------------------------|-----------------------------------------------------------------|
| Eurotion                     | This unit is, as a device, controlled by an external controller |
| Function                     | This unit outputs, as a controller, print data to a printer.    |
| Communication method         | Asynchronous (start-stop synchronization), half-duplex          |
| Communication control method | CTS/RTS control                                                 |
| Baud rate                    | 2400, 4800, 9600 bps                                            |
| Data bit                     | 7 bits, 8 bits                                                  |
| Parity                       | Odd (ODD), even (EVEN), none (NON)                              |
| Start bit                    | 1 bit                                                           |
| Stop bit                     | 1 bits, 2 bits                                                  |
| Connector                    | D-sub 9 pin, female                                             |

# **Section 2 Connection Method**

This chapter explains the RS-232C and GPIB cable connection with external devices such as a host computer, PC, or printer, and how to set the interface of this device.

| 2.1 | Connection Through GPIB Cable                          | 2-2 |
|-----|--------------------------------------------------------|-----|
| 2.2 | Setting the GPIB Interface Conditions                  | 2-3 |
| 2.3 | Connection with External Devices through RS-232C Cable | 2-4 |
| 2.4 | Connection Diagram of RS-232C Interface Signals        | 2-5 |
| 2.5 | Setting the RS-232C Interface Conditions               | 2-6 |

Section 2 Connection Method

## 2.1 Connection Through GPIB Cable

The GPIB connector on the rear side of this device and that of an external device by using the GPIB cable are connected.



### Note:

Be sure to connect the GPIB cable before turning on the power of this unit.

Up to 15 devices including the controller can be connected to a system. Follow the conditions described above when connecting the devices.

## 2.2 Setting the GPIB Interface Conditions

Set the GPIB interface conditions for this unit with the following operations.



(2) Press the F1: GPIB key on the menu.A window for setting the GPIB interface conditions is displayed.

(3) Set each interface condition following the explanations below.

### (a) GPIB MY ADDRESS

 $\rightarrow$ The GPIB address of this unit is set (0 to 30).

### (b) CONTROL FUNCTION

 $\rightarrow$ The control condition of GPIB of this unit is set.

### DEVICE:

This unit operates as a device among the GPIB connected devices.

Set this condition if you want to control this unit from an external computer.

You cannot set the "DEVICE" condition for CONTROL FUNCTION of both RS-232C and GPIB.

### CONTROLLER:

This unit operates as a system controller among the GPIB connected devices. Set this condition if you want to hardcopy to a printer or control external devices from PTA.

### (c) ENABLE REGISTER ALL

 $\rightarrow$ ENABLE REGISTER (registers set by \*SRE, \*ESE, ESE1, ESE2, ESE3) is set.

OFF : All Enable registers are set to OFF (disable state).

ON : All Enable registers are set to ON (enable state).

### (d) TERMINATOR (for TALKER)

 $\rightarrow$ Terminator code for TALKER data is set.

### (e) TIME-OUT

 $\rightarrow$ Time-out time for send-receive operations is set if the "CONTROLLER" condition is selected for CONTROL FUNCTION (0 to 99999 s).

If you set 0, time-out is not set (infinite wait).

### (f) ACTIVE PORT or HADR COPY

 $\rightarrow$ Active ports are selected from the interface ports for which the "CONTROLLER" condition is set for CONTROL FUNCTION.

The parallel (Centro) interface operates always in the "CONTROLLER" condition.

An active port is an interface port which actually performs input/output operations for hard copy, or control from PTA.

This function is invalid for interfaces for which the "CONTROLLER" condition is not set.

Section 2 Connection Method

## 2.3 Connection with External Devices through RS-232C Cable

If the RS-232C/Centro interface (option 02) is installed on this unit, the RS-232C connector (D-sub, 9-pin, female) on the rear side of this unit and that of an external device can be connected using an RS-232C cable.

Rear side of measuring instrument



### Note:

Since there are two types of RS-232C connectors with a different number of pins (9-pin and 25-pin), it is necessary to check the number of pins of the external device before purchasing an RS-232C cable.

• RS-232C cable (for PC98 machine, VP-600 printer)



## 2.4 Connection Diagram of RS-232C Interface Signals

The following figure shows a connection diagram of RS-232C interface signals between this unit, and a PC or a printer.



### Connection diagram with a PC98 machine, or VP-600 printer



D-sub, 9P, male

D-sub, 9P, female

### Connection diagram with a DOS/V machine

Section 2 Connection Method

## 2.5 Setting the RS-232C Interface Conditions

Set the RS-232C interface conditions for this unit with the following operations.



(2) Press the F2: RS232C (Opt) key on the menu.

A window for setting the RS-232C interface conditions is displayed. The window will not be displayed if option 02 (RS-232C/Centro interface) is not installed.

(3) Set each interface condition following the explanations below.

### (a) CONTROL FUNCTION

 $\rightarrow$ The control condition of RS-232C of this unit is set.

### DEVICE:

Set this condition if you want to control this unit from an external computer. You cannot set the "DEVICE" condition for CONTROL FUNCTION of both RS-232C and GPIB.

### CONTROLLER:

Set this condition if you want to hardcopy to a printer or control external devices from PTA.

### (b) TERMINATOR (for TALKER)

→Terminator code for TALKER data is set.

### (c) TIME-OUT

 $\rightarrow$ Time-out time for send-receive operations is set if the "CONTROLLER" condition is selected for CONTROL FUNCTION (0 to 99999 s).

If you set 0, time-out is not set (infinite wait).

### (d) ACTIVE PORT for HARD COPY

 $\rightarrow$ Active ports are selected from the interface ports for which the "CONTROLLER" condition is set for CONTROL FUNCTION.

The parallel (Centro) interface operates always in the "CONTROLLER" condition.

An active port is an interface port which actually performs input/output operations for hard copy, or control from PTA.

This function is invalid for interfaces for which the "CONTROLLER" condition is not set.

### (e) BAUD RATE

 $\rightarrow$ Set the baud rate (9600/4800/2400 bps).

### (f) DATA BITS

 $\rightarrow$ Set the data bit length (7/8 bits).

### (g) STOP BIT

 $\rightarrow$ Set the stop bit length (1/2 bits).

### (h) PARITY

Set the parity (OFF/EVEN/ODD)

# **Section 3 Device Message Format**

This chapter explains the format of device messages sent and received between the controller (host computer) and device (measuring instrument) through GPIB/RS-232C.

| 3.1 | Overview |                         | 3-2 |
|-----|----------|-------------------------|-----|
|     | 3.1.1    | Program message format  | 3-2 |
|     | 3.1.2    | Response message format | 3-6 |

Section 3 Device Message Format

## 3.1 Overview

Device messages are data that are sent and received between the controller and devices. There are two types of device messages: program messages (data output to this unit from the controller) and response messages (data input into the controller from this unit). Some program messages are program commands that set parameters to this unit or instruct processing. Others are program queries that inquire about the contents of parameters or measurement results.

## 3.1.1 Program message format

The following format is used to output program messages to this unit from the controller program with a WRITE statement.



### (1) Program message terminator



CR (carriage return) is not handled as a terminator and is ignored.

### (2) Program message



Multiple commands can be output using ";".

<Example> WRITE #1, "CNF 10.7MHZ; SPF 100KHZ"

### 3.1 Overview

### (3) Program message unit



- "\*" is attached to the beginning of the program header of IEEE488.2 common commands.
- If program data is numeric program data, (a) between the program header and program data can be omitted.
- The last character of the program header of a program query is generally "?".

### (4) Program data



### (5) Character program data

Pre-defined string data consisting of alphabet characters from A to Z. <Example> WRITE #1, "CPL MKR, ON" .... The coupled marker function is turned on.

### Section 3 Device Message Format

### (6) Numeric program data

Numeric program data is either in the integer format (NR1) or fixed-point format (NR2).

#### <Numeric format (NR1)>



- 0 can be set at the beginning.  $\rightarrow$  005, +000045
- No space is allowed between the sign (+ or –) and numeric character.  $\rightarrow$  +5, + $\triangle$ 5 (×)
- Space is allowed after the numeric character.  $\rightarrow$  +5  $\triangle$   $\triangle$
- The + sign is not obligatory.  $\rightarrow$  +5.5
- The comma cannot be used as a digit separator.  $\rightarrow$  1,234,567 (×)

<Fixed-point format (NR2)>



- The numeric representation in the integer format is applied to the (integer part).
- No space is allowed between the numeric character and decimal point.  $\rightarrow$  +753  $\triangle$ .123 (X)
- Space can be inserted between numeric characters in the (fraction part).  $\rightarrow$  +753.123 $\triangle$  $\triangle$
- The numeric value before the decimal point is not obligatory.  $\rightarrow$  .05
- The sign can be put before the decimal point.  $\rightarrow$  +.05, -.05
- The numeric value can terminate with the decimal point.  $\rightarrow$  12.

### (7) Suffix data (units) concerning frequencies

The following table shows the suffix codes (unit codes) used to set measurement parameters and data concerning frequency units.

| Frequency unit             | Usable suffix code     |
|----------------------------|------------------------|
| Setting in hertz units     | "HZ" or no suffix code |
| Setting in kilohertz units | "KHZ", "K" or "KZ"     |
| Setting in megahertz units | "MHZ", "M" or "MZ"     |

### (8) String program data



 A string data is enclosed by a pair of 'such as '.......'. WRITE #1, "TEN 'ABCDE'" To include ' in a string, specify two ' as ". WRITE #1, "TEN 'ABCDE''FGH'''" ABCDE'FGH' is set as the title.

### Section 3 Device Message Format

### 3.1.2 Response message format

The following format is used to input response messages to the controller from this unit with a READ statement.

| Booponoo moooogo | Response message |
|------------------|------------------|
| nesponse message | terminator       |

### (1) Response message terminator



Which of the response message terminators to use can be specified by the TRM command.

### (2) Response message



A response message consists of one or more response message units to one or more program queries with one WRITE statement.

### (3)Normal response message unit



(4) Response data



(5) Character response data

Pre-defined string data consisting of A to Z/a to z, 0 to 9, and "\_" (underline).

- (6) Numeric response data
- <Numeric format (NR1)>



• 0 is not allowed as the top-digit numeric character. <Example> 123 – 1234

### <Fixed-point format (NR2)>



- 0 is not allowed as the top-digit numeric character.
- If the numeric value below the decimal point is 0, the value is output in the integer format.

Section 3 Device Message Format

# **Section 4 Status structure**

This chapter explains the device status report and its data structure defined in the IEEE488.2 standard for using the GPIB interface. How to synchronize between the device and controller is also explained.

This is a function used for controlling from an external controller using the GPIB interface bus. Except for part of the function, this function can also be used for controlling from an external controller using the RS-232C interface.

| 4.1 | IEEE4  | 88.2 Standard Status Model                            | 4-2  |
|-----|--------|-------------------------------------------------------|------|
| 4.2 | Status | Byte (STB) Register                                   | 4-4  |
|     | 4.2.1  | ESB and MAV summary messages                          | 4-4  |
|     | 4.2.2  | Device-specific summary message                       | 4-5  |
|     | 4.2.3  | Reading and clearing the STB register                 | 4-6  |
| 4.3 | Servic | e Request (SRQ) Enable Operation                      | 4-7  |
| 4.4 | Standa | ard Event Status Register                             | 4-8  |
|     | 4.4.1  | Bit definition for the Standard Event Status register | 4-8  |
|     | 4.4.2  | Reading, writing, and clearing the Standard           |      |
|     |        | Event Status register                                 | 4-9  |
|     | 4.4.3  | Reading, writing, and clearing the Standard           |      |
|     |        | Event Status Enable register                          | 4-9  |
| 4.5 | Extend | ded Event Status Register                             | 4-10 |
|     | 4.5.1  | Reading, writing, and clearing the Extended           |      |
|     |        | Event Status register                                 | 4-12 |
|     | 4.5.2  | Reading, writing, and clearing the Extended           |      |
|     |        | Event Status Enable register                          | 4-12 |
| 4.6 | How to | o Synchronize between Measuring Instrument and        |      |
|     | Contro | oller                                                 | 4-13 |
|     | 4.6.1  | Response waiting after the *OPC? query                | 4-13 |
|     | 4.6.2  | Service request waiting after *OPC                    |      |
|     |        | (only if the GPIB interface bus is used)              | 4-14 |

### Section 4 Status structure

The STB-Status Byte sent to the controller is based on the IEEE488.1 standard. Its configuration bits are called the status summary message and summarize the current contents stored in the registers and queues.

## 4.1 IEEE488.2 Standard Status Model

The following shows a standard model diagram of the status structure defined in IEEE488.2.



Standard status model diagram

### 4.1 IEEE488.2 Standard Status Model

In the status model, the IEEE488.1 Status Byte is used as the lowest status. Its Status Byte is composed of seven summary message bits provided by the upper status structure. To generate these summary message bits, the status data structure is composed of the register model and queue model.

| Register model                                            | Queue model                                             |
|-----------------------------------------------------------|---------------------------------------------------------|
| The register model is a set of registers to record the    | This is a queue to record the waiting condition or      |
| events and condition encountered by the device. Its       | information sequentially. This is called the queue      |
| structure is composed of the Event Status Register and    | model. In the queue structure, only if there is data in |
| Event Status Enable register. If AND of both registers do | the queue, the corresponding bit becomes 1 and if the   |
| not produce 0, the corresponding bit of the status bit    | queue is free, the corresponding bit becomes 0.         |
| becomes 1 and otherwise 0. If the result of the logical   | Based on the register model and queue model             |
| OR of both registers is 1, the summary message bit        | explained above the standard model of the status data   |
| OR of both registers is 1, the summary message bit        | explained above, the standard model of the status data  |
| becomes 1. If the result of the logical OR is 0, the sum- | structure of IEEE488.2 is composed of two kinds of      |
| OR of both registers is 1, the summary message bit        | explained above, the standard model of the status data  |
| becomes 1. If the result of the logical OR is 0, the sum- | structure of IEEE488.2 is composed of two kinds of      |
| mary message bit becomes 0.                               | register models and one queue model.                    |

Based on the register model and queue model explained above, the standard model of the status data structure of IEEE488.2 is composed of two kinds of register models and one queue model.

- (1) Standard Event Status register and Standard Event Status Enable registe
- (2) Status Byte register and Service Request Enable register
- (3) Output queue

| Standard Event Status Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Status Byte Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Output Queue                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This has the register model structure<br>described above. Among the events encoun-<br>tered by the device, eight kinds of events<br>((1)power-on, (2)user request, (3)command<br>error, (4)execution error, (5)device-specific<br>error, (6)query error, (7)bus control request,<br>(8)operation completion) are set in the Stan-<br>dard Event Status register as the standard<br>events. The logical OR output bit is repre-<br>sented summarily at Bit 5 (DI06) of the Sta-<br>tus Byte register as the Event Status Bit<br>(ESB) summary message. | The Status Byte register is a register in<br>which the RQS bit and seven summary<br>message bits from the status data struc-<br>ture can be set, and is used in combina-<br>tion with the Service Request Enable<br>register. If OR of both registers do not<br>produce 0, SRQ becomes ON. Bit 6<br>(DI07) of the Status Byte register in<br>this case is reserved as the RQS bit by<br>the system, and this bit notifies the<br>external controller that a service is<br>requested. This SRQ structure is based | This has the queue model<br>structure described above,<br>and its content notifies<br>that there is data in the out-<br>put buffer. The content is<br>represented summarily at<br>Bit 4 (DI05) of the Status<br>Byte register as the Mes-<br>sage Available (MAV)<br>summary message. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on the IEEE488.1 standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |

Section 4 Status structure

# 4.2 Status Byte (STB) Register

The STB register is composed of STB of a device and the RQS (or MSS) message.

### 4.2.1 ESB and MAV summary messages

The following explains about the ESB and MAV summary messages.

### (1) ESB summary message

The ESB (Event Summary Bit) message is a message defined in IEEE488.2, and uses Bit 5 of the STB register. The ESB summary message bit becomes 1 if any of the events registered in the Standard Event Status register becomes 1 in a state in which event occurrence is enabled. If no registered event occurs even in a state in which event occurrence is enabled. If no registered event occurs even in a state in which event occurrence is enabled. If no registered event occurs even in a state in which event occurrence is enabled.

If the ESR register is read after an \*ESR? query, or the ESR register is cleared by the \*CLS command, this bit becomes 0.

### (2) MAV summary message

The MAV (Message Available) message is a message defined in IEEE488.2, and uses Bit 4 of the STB register. This bit indicates whether or not the output queue is 'free'. If a device is ready to accept send requests of response messages from the controller, the MAV summary message bit becomes 1, and if the output queue is 'free', it becomes 0. This message is used to synchronize for information exchange with the controller. For example, the controller sends a query command to the device and waits for MAV to become 1. While waiting for a response from the device, the controller can perform other processing. If the output queue is read without checking the MAV, all system bus operations must wait until the device responds.

### 4.2 Status Byte (STB) Register

## 4.2.2 Device-specific summary message

This device, as shown below, does not use Bit 0 and Bit 7, but uses Bit 1, Bit 2, Bit 3 and Bit 5 as the summary bit for the Event register.



Status summary message

### Section 4 Status structure

### 4.2.3 Reading and clearing the STB register

Contents of the STB register are read by using the serial polling or \*STB? query. STB messages of IEEE488.1 can be read using either method, but the value sent to Bit 6 (location) depends on the method. Contents of the STB register can be cleared by the \*CLS command.

### (1) Reading by using the serial polling (only if the GPIB is used)

If serial polling based on IEEE488.1 is carried out, 7 bits of the Status Byte and the RQS message bit based on IEEE488.1 are sent back. The values of the Status Byte are not changed after carrying out serial polling. The device sets the RQS message bit to 0 just after polling is carried out.

### (2) Reading by using the \*STB common query

Integer-format response messages consisting of the STB register contents and MSS (Master Summary Status) summary messages are sent to the device in response to the \*STB common query. Therefore, the response to \*STB? is the same as that to serial polling except that the MSS summary message appears at Bit 6 instead of the RQS message.

### (3) MSS (Master Summary Status) definition

This message indicates that there is a cause to request at least one service in the device. The MSS message appears at Bit 6 in the response of the device to the \*STB query, but does not appear as a response to serial polling. MSS must not be seen as part of the Status Byte of IEEE488.1. MSS is structured by the total OR in the combination of bits of the STB register and SRQ Enable (SRE) register.

### (4) Clearing the STB register by the \*CLS common command

The \*CLS common command clears all status data structures, and accordingly also clears the corresponding summary messages. The set values of each Enable register are not affected by \*CLS.

### 4.3 Service Request (SRQ) Enable Operation

## 4.3 Service Request (SRQ) Enable Operation

Whether STB correspondence bits issue SRQ or not can be controlled by the conditions of Bit 0 to Bit 7 of the Service Request Enable (SRE) register.

The bits on the Service Request Enable register correspond to the bits on the Status Byte register. If any of the bits of the Status Byte becomes 1 whose corresponding bits on the Service Request Enable register are set to 1, the device sets the RQS bit to 1, and sends a service request to the controller.



### (1) Reading the SRE register

Contents of the SRE register can be read by using the \*SRE? common query. The response message to this query is an integer between 0 and 255, and it is the sum of each bit place value of the Service Request Enable register.

### (2) Updating the SRE register

The SRE register can be written in by using the \*SRE common command. An integer between 0 and 255 is added as a parameter and the bits of the SRE register are set to 0/1. The value at Bit 6 is ignored.

Section 4 Status structure

## 4.4 Standard Event Status Register

## 4.4.1 Bit definition for the Standard Event Status register

The following figure shows a Standard Event Status register model.



The Standard Event Status Enable register on the left side selects whether the summary message should be set to True when any bit of the corresponding Event register is set to 1.

| Bit | Event name                 | Explanation                                                                  |
|-----|----------------------------|------------------------------------------------------------------------------|
| 7   | Power-on (POP-Power on)    | Power changed from OFF to ON.                                                |
| 6   | (Unused)                   |                                                                              |
| 5   | Command error              | Grammatically incorrect program message or misspelled command is             |
|     | (CME-Command Error)        | received.                                                                    |
| 4   | Execution error            | Non-executable program message, though grammatically correct, is             |
|     | (EXE-Execution Error)      | received.                                                                    |
| 3   | (Unused)                   |                                                                              |
| 2   | Query error                | Attempt is made to read data from the output queue, though there is no data  |
|     | (QYE-Query Error)          | in the output queue. Or, data in the output queue is lost before it is read. |
| 1   | (Unused)                   |                                                                              |
| 0   | Operation completion       | This bit becomes 1 when this unit completes the *OPC command.                |
|     | (OPC-Operation Completion) |                                                                              |
# 4.4.2 Reading, writing, and clearing the Standard Event Status Register

| Read by the *ESR? common query.                  |                                                                                             |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
| Read                                             | The register is cleared after reading. The response message is integer-format data which is |  |  |  |
|                                                  | obtained by summing up each event bit with the binary number weight and then converting     |  |  |  |
|                                                  | the sum into a decimal number.                                                              |  |  |  |
| Write                                            | Excluding clearing, nothing can be written from outside.                                    |  |  |  |
| In the following cases, the register is cleared. |                                                                                             |  |  |  |
| Clear                                            | (1) When *CLS command is received.                                                          |  |  |  |
|                                                  | (2) When power is turned on. Bit 7 is set to ON and other bits are set to 0.                |  |  |  |
|                                                  | (3) When an event is read in response to an *ESR query command.                             |  |  |  |

# 4.4.3 Reading, writing, and clearing the Standard Event Status Enable Register

|       | Read by the *ESE? common query.                                                            |  |
|-------|--------------------------------------------------------------------------------------------|--|
| Read  | The response message is integer-format data which is obtained by summing up each event bit |  |
|       | with the binary number weight and then converting the sum into a decimal number.           |  |
| Write | *ESE common command is used to write.                                                      |  |
|       | In the following cases, the register is cleared.                                           |  |
|       | (1) When *ESE command with a data value 0 is received                                      |  |
|       | (2) When power is turned on.                                                               |  |
| Clear | The Standard Event Status Enable register is not affected by the following items.          |  |
|       | (1) Condition change of the device clear function of IEEE488.1                             |  |
|       | (2) *RST common command reception                                                          |  |
|       | (3) *CLS common command reception                                                          |  |

Section 4 Status structure

# 4.5 Extended Event Status Register

In this unit, Bit 7 and Bit 0 are unused and Bit 1 to Bit 3 are allocated for the status summary bits provided by the extended register model.



#### 4.5 Extended Event Status Register



#### Section 4 Status structure

# 4.5.1 Reading, writing, and clearing the Extended Event Status Register

| Read  | Read by the *ESR? query. This register is cleared after reading.<br>The response message is integer-format data which is obtained by summing up each<br>event bit with the binary number weight and then converting the sum into a decimal<br>number. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Write | Excluding clearing, nothing can be written from outside.                                                                                                                                                                                              |
|       | In the following cases, the register is cleared.                                                                                                                                                                                                      |
| Clear | (1) When *CLS command is received.                                                                                                                                                                                                                    |
|       | <ul><li>(2) when power is turned on.</li><li>(3) When an event is read in response to an *ESR? query command.</li></ul>                                                                                                                               |

# 4.5.2 Reading, writing, and clearing the Extended Event Status Enable Register

|       | Read by the *ESE? query.                                                                   |
|-------|--------------------------------------------------------------------------------------------|
| Bood  | The response message is integer-format data which is obtained by summing up each           |
| neau  | event bit with the binary number weight and then converting the sum into a decimal         |
|       | number.                                                                                    |
|       | *ESE program command is used to write.                                                     |
| Write | Bit 0 to Bit 7 have each the weight 1, 2, 4, 8, 16, 32, 64, and 128. Write data is sent as |
|       | integer-format data which is obtained by summing up desired bit place values.              |
|       | In the following cases, the register is cleared.                                           |
|       | (1) When *ESE program command with a data value 0 is received                              |
|       | (2) When power is turned on.                                                               |
| Clear | The Extended Event Status Enable register is not affected by the following items.          |
|       | (1) Condition change of the device clear function of IEEE488.1                             |
|       | (2) *RST common command reception                                                          |
|       | (3) *CLS common command reception                                                          |

# 4.6 How to Synchronize between Measuring Instrument and Controller

Since this unit handles the specified program messages as sequential commands (after processing of one command is completed, another command is started), there is no need to pay special attention to one-to-one synchronization between this unit and the controller.

If the controller controls multiple devices while synchronizing them, it is necessary to send commands to other devices after all commands specified for this unit are completed.

The following two methods are available to synchronize between this unit and the controller.

- (1) Response waiting after the \*OPC? query
- (2) SRQ waiting after \*OPC

# 4.6.1 Response waiting after the \*OPC? query

If the \*OPC? query is performed, this unit outputs "1" as a response message. The controller achieves synchronization by waiting until this response message is input.



#### Section 4 Status structure

# 4.6.2 Service request waiting after \*OPC (only if the GPIB interface bus is used)

If the \*OPC command is performed, this unit sets the "Operation completion" bit of the Standard Event Status register to 1. Synchronization is handled by setting this bit to be reflected by SRQ and waiting for it.



#### ■<Control program>



# **Section 5 Initial Setting**

This unit performs initial settings in three levels according to the IEEE488.2 standard. This chapter explains this three-level initialization processing and how to instruct initialization from the controller.

| 5.1 | Bus Initialization by IFC Statement            | 5-3 |
|-----|------------------------------------------------|-----|
| 5.2 | Initialization for Message Exchange by DCL and |     |
|     | SDC Bus Commands                               | 5-4 |
| 5.3 | Device Initialization by the *RST Command      | 5-5 |
| 5.4 | Device Initialization by the INI Command       | 5-6 |
| 5.5 | Device Condition during Power-on               | 5-7 |

#### Section 5 Initial Setting

In IEEE488.2, initialization of the GPIB system is divided into three levels. The first level is specified as "bus initialization", the second level as "message exchange initialization", and the third level as "device initialization". Device condition during power-on is also specified so that the condition must be set to a known condition.

| Level | Initialization type             | Outline                                      | Level combination and order    |
|-------|---------------------------------|----------------------------------------------|--------------------------------|
|       |                                 | The interface function of all devices con-   | This level can be used in com- |
| 1     | Bus initialization              | nected to the bus are initialized by the IFC | bination with other levels,    |
| 1     |                                 | message from the controller.                 | but level 1 must be carried    |
|       |                                 |                                              | out before level 2.            |
|       |                                 | The message exchange function for all        | This level can be used in com- |
|       | Message exchange initialization | devices on GPIB is initialized by the GPIB   | bination with other levels,    |
| 2     |                                 | bus command DCL, or that for the specified   | but level 2 must be carried    |
| 2     |                                 | device is initialized by the GPIB bus com-   | out before level 3.            |
|       |                                 | mand SDC. The function to notify the con-    |                                |
|       |                                 | troller of operation completion is disabled. |                                |
|       | Device initialization           | The device specified by the *RST or INI      | This level can be used in com- |
| 2     |                                 | command is restored to its device-specific   | bination with other levels,    |
| 3     |                                 | known condition regardless of the past       | but level 3 must be carried    |
|       |                                 | usage.                                       | out after level 1 and level 2. |

When controlling from the controller using the GPIB interface bus, initialization functions of all levels can be used.

When controlling from the controller using the RS-232C interface bus, level 3, "Device initialization," can be used. Initialization functions of level 1 and level 2 cannot be used.

In the following, commands for executing the level 1, 2, and 3 initialization and initialization items are explained. Known conditions which are set during power-on are also explained.

#### 5.1 Bus Initialization by IFC Statement

# 5.1 Bus Initialization by IFC Statement

#### (1) Example

```
board%=0
CALL SendIFC (board%) 2
```

#### (2) Explanation

This function can be used for controlling from the controller using the GPIB interface bus.

The interface function of all devices connected to the GPIB bus line is initialized by the IFC statement.

Initialization of the interface function is an operation to release the condition (Talker, Listener, and others) of the device interface function set by the controller and restore it to its initial condition, and initializes each function with a circle in the following table. Functions with a triangle are partially initialized.

| No | Function                      | Symbol  | Initialization by IFC |
|----|-------------------------------|---------|-----------------------|
| 1  | Source handshake              | SH      | 0                     |
| 2  | Acceptor handshake            | AH      | 0                     |
| 3  | Talker or extended talker     | T or TE | 0                     |
| 4  | Listener or extended listener | L or LT | 0                     |
| 5  | Service request               | SR      | $\bigtriangleup$      |
| 6  | Remote/local                  | RL      |                       |
| 7  | Parallel poll                 | PP      |                       |
| 8  | Device clear                  | DC      |                       |
| 9  | Device trigger                | DT      |                       |
| 10 | Controller                    | С       | 0                     |

If the bus is initialized by the IFC statement, device operation conditions (frequency set values, ON/OFF of LED, etc.) are not affected.

Section 5 Initial Setting

# 5.2 Initialization for Message Exchange by DCL and SDC Bus Commands

#### (1) Example

Initialization for the message exchange of all devices under the bus (DCL is sent).

board%=0
address list%=NOADDR
CALL DevClearList (board%,addresslist%)

Initialization for the message exchange of only the third device in the address (SDC is sent).

```
board%=0
address%=3
CALL DevClear (board%,address%)
```

#### (2) Explanation

This function can be used for controlling from the controller using the GPIB interface bus. This is a statement which initializes the message exchange for all devices on GPIB of the specified select code, or for the specified devices.

#### (3) Initialization items for the message exchange

٠,

...

Upon receipt of the DCL or SDC bus command, this unit performs the following processing.

. 1

1. Input buffer and output queue...... Both are cleared. The MAV bit is also cleared.

| 2. | Syntax analysis unit, execution control unit, |                                                                  |
|----|-----------------------------------------------|------------------------------------------------------------------|
|    | and response creation unit                    | All are reset.                                                   |
| 3. | Device commands containing *RST               | Commands which prevent execution of these commands are           |
|    |                                               | cleared.                                                         |
| 4. | *OPC command processing.                      | The device is set to the OCIS state (Operation Complete          |
|    |                                               | Command Idle state). As a result, the Operation Complete bit     |
|    |                                               | cannot be set in the Standard Event Status register.             |
| 5. | *OPC? query processing                        | The device is set to the OQIS state (Operation Complete          |
|    |                                               | Query Idle state). As a result, the operation completion data    |
|    |                                               | "1" cannot be set to the output queue.                           |
| 6. | Device function.                              | All devices are set to the idle state. The device waits for mes- |
|    |                                               | sages from the controller.                                       |

# 

DCL and SDC bus command processing does not affect the following items.

- 1. Current device set data and stored data
- 2. Front panel condition
- 3. Status Byte condition excluding the MAV bit
- 4. Device operations which are currently progressing

# 5.3 Device Initialization by the \*RST Command

(1) Format

\*RST

(2) Example

In the case of GPIB
NWA% = 1
CALL Send (0, NWA, "\*RST", NLend)
In the case of RS-232C
WRITE #1, "\*RST" ..... Device (this unit) in address 1 is initialized in level 3

#### (3) Explanation

The \*RST (Reset) command is one of the IEEE488.2 common commands and initializes devices in level 3. The \*RST (Reset) command is used to set the device (this unit) to a specific initial state. For details of the initialization items and initial values, see Appendix A.

#### Notes:

The \*RST command does not affect the following items.

- 1. IEEE488.1 interface condition
- 2. Device address
- 3. Output queue
- 4. Service Request Enable register
- 5. Standard Event Status Enable register
- 6. Power-on-status-clear flag setting
- 7. Calibration data affecting the device standard
- 8. Set parameters related to external device control

Section 5 Initial Setting

# 5.4 Device Initialization by the INI Command

(1) Format

INI

(2) Example (program message)

In the case of GPIB CALL Send (0, NWA, "INI", NLend)

In the case of RS232-C

WRITE #1, "INI" ..... Device (this unit) in address 1 is initialized in level 3

#### (3) Explanation

The INI command is one of the device messages specific to this unit and initializes devices in level 3. For details of the initialization items and initial values, see Appendix A.

#### 5.5 Device Condition during Power-on

# 5.5 Device Condition during Power-on

If power is turned on

- (1) The condition when power is turned off last time is set.
- (2) The input buffer and output queue are cleared.
- (3) The syntax analysis unit, execution control unit, and response creation unit are initialized.
- (4) The device is set to the OCIS state (Operation Complete Command Idle state).
- (5) The device is set to the OQIS state (Operation Complete Query Idle state).
- (6) The Standard Event Status register and Standard Event Status Enable register are cleared. Events are registered after clearing.

As a special case of (1), when power is turned on for the first time after shipment, the state of the initial setting list (Appendix A) is reproduced.

Section 5 Initial Setting

# **Section 6 List of Device Messages**

This section lists device messages that can be used for this device according to functions in the order shown in the following table.

| Initialization -PRESET                      | 6-6  |
|---------------------------------------------|------|
| Device initialization (INI)                 | 6-6  |
| Measurement channel -MENU                   | 6-6  |
| Measurement channel selection (SELCH)       | 6-6  |
| Active channel selection (ACCH)             | 6-6  |
| Coupled channel selection (CPL CH)          | 6-6  |
| Measuring port -MEAS                        | 6-6  |
| Analytical port (MEASPT)                    | 6-6  |
| Impedance measurement -SYSTEM               | 6-6  |
| Measurement method selection (IMPMD)        | 6-6  |
| Measuring format -FORMAT                    | 6-7  |
| Measuring format (TRC)                      | 6-7  |
| Impedance marker representation form (IMV)  | 6-7  |
| Admittance marker representation form (ADV) | 6-7  |
| Phase offset (PHOF/PHO)                     | 6-7  |
| Frequency -FREQUENCY, SPAN                  | 6-8  |
| Frequency band setting mode (FRQ)           | 6-8  |
| Linear/log switching (LOG)                  | 6-8  |
| Center frequency (CNF)                      | 6-8  |
| Frequency span (SPF)                        | 6-8  |
| Start frequency (STF)                       | 6-8  |
| Stop frequency (SOF)                        | 6-8  |
| Waveform averaging/smoothing -AVG           | 6-9  |
| Averaging (AVG)                             | 6-9  |
| Smoothing (SMT)                             | 6-9  |
| Delay aperture (HDRG)                       | 6-9  |
| Resolution bandwidth auto-setting (AU2)     | 6-9  |
| Resolution bandwidth (RBW)                  | 6-9  |
| Averaging type (AVT)                        | 6-9  |
| Sweep control -SWEEP                        | 6-10 |
| Sweep mode (SW2)                            | 6-10 |
| Sweep start (SWP)                           | 6-10 |
| Sweep stop/restart (SW3)                    | 6-10 |
| Sweep time auto-setting (AU1)               | 6-10 |
| Sweep time (SWT)                            | 6-10 |
| Total sweep/marker sweep (SW1)              | 6-10 |
| Measuring point (MEP)                       | 6-11 |
| Breakpoint (BKP)                            | 6-11 |
|                                             |      |

| External trigger sweep (TRGMD)                | 6-11 |
|-----------------------------------------------|------|
| External trigger mode (TRGSW)                 | 6-11 |
| External trigger edge (TRGEG)                 | 6-11 |
| Output/input -OUT/INPUT                       | 6-12 |
| Output power (OPL)                            | 6-12 |
| Source power (SPWR)                           | 6-12 |
| Output offset (OOFS)                          | 6-12 |
| Output attenuator (OATT)                      | 6-12 |
| Power sweep ON/OFF (LSW)                      | 6-12 |
| Power sweep start power (STL)                 | 6-12 |
| Power sweep end power (SOL)                   | 6-12 |
| Power sweep step level (SEL)                  | 6-13 |
| Output port switching (OUTCND)                | 6-13 |
| Input range (IAR/IATA, IRG/IATB)              | 6-13 |
| Input impedance (IMPR/IMPTA, IMP/IMPTB)       | 6-13 |
| Standard impedance (RIMP)                     | 6-14 |
| Input overload state (OVL?)                   | 6-14 |
| Calibration -CALIBRATION                      | 6-15 |
| $X \rightarrow S$ normalize sweep start (CAL) | 6-15 |
| X - S normalize function ON/OFF (CXS)         | 6-15 |
| Calibration type selection (ECL)              | 6-15 |
| Calibration data uptake sweep start (COR)     | 6-15 |
| Calibration ON/OFF (CORR)                     | 6-16 |
| Device parameter for calibration              |      |
| (CC0/CC1/CC2/CC3/COO/COS/COT)                 | 6-16 |
| Waveform display scale -SCALE                 | 6-17 |
| Auto-scale (SAU)                              | 6-17 |
| Display scale (SCAL/SCA/SCB)                  | 6-17 |
| Display offset (OFST/OFA/OFB)                 | 6-18 |
| Display offset (OFS/OFLN)                     | 6-18 |
| Electric length compensation (ELG)            | 6-18 |
| Trace (waveform) -TRACE                       | 6-19 |
| Active trace (ACTR)                           | 6-19 |
| Split display (DF2)                           | 6-19 |
| Waveform storage ON/OFF (STOR)                | 6-19 |
| Overwrite display ON/OFF (OVP/OVPA/OVPB)      | 6-19 |
| Grid type (DF1)                               | 6-19 |
| Display and delete item (DF4/DF3)             | 6-19 |
| DISPLAY ALL (DAS)                             | 6-19 |
| Subtrace ON/OFF (STR)                         | 6-20 |
| Marker -MKR                                   | 6-21 |
| Active marker value read (MKV?/MVA?/MVB?)     | 6-21 |
| Multi-marker value read (MKV?)                | 6-21 |
| Active marker frequency read (MKF?)           | 6-21 |
| Multi-marker frequency read (MKF?)            | 6-21 |
|                                               |      |

| Multi-marker setting (MSET)                           | 6-21 |
|-------------------------------------------------------|------|
| Multi-marker release (MRST)                           | 6-21 |
| Reference marker value read (RFA?/RFB?)               | 6-22 |
| Zero marker value read (ZRA?/ZRB?)                    | 6-22 |
| Marker ON/OFF state read (MRST?)                      | 6-22 |
| Active marker number read (MRST?)                     | 6-22 |
| Standard marker setting (RMKR)                        | 6-22 |
| Active marker position setting (CMK)                  | 6-22 |
| Coupled marker ON/OFF (CPL MKR)                       | 6-22 |
| Marker delete (MKD)                                   | 6-22 |
| Marker setting mode -SYSTEM (MKRMD)                   | 6-22 |
| Marker function-FCTN                                  | 6-23 |
| Marker mode (MKR)                                     | 6-23 |
| Function using marker values (MKR)                    | 6-23 |
| Marker track function (TRKMOD)                        | 6-23 |
| Marker list display (MKLST)                           | 6-23 |
| Filter analysis function -FILTER                      | 6-24 |
| Filter analysis function ON/OFF (FLTR SW)             | 6-24 |
| Filter center frequency (FLTR CNF)                    | 6-24 |
| Insertion loss calculation standard (FLTR TYP)        | 6-24 |
| Bandwidth calculation standard (FLTR BWR)             | 6-24 |
| X1 dB/X2 dB (FLTR X1D/FLTR X2D)                       | 6-24 |
| Ripple search start/end frequency (FLTR STF/FLTR SOF) | 6-24 |
| Ripple resolution (FLTR RSL)                          | 6-24 |
| Frequency result display place number assignment      |      |
| (FLTR DGT)                                            | 6-24 |
| Calculation result read (FLTR?/RESF?)                 | 6-25 |
| Resonator analysis function -RESONATOR                | 6-26 |
| Resonator analysis function ON/OFF (RESO SW)          | 6-26 |
| Analysis method selection (RESO TYP)                  | 6-26 |
| Analysis band start frequency/end                     |      |
| frequency (RESO STF/RESO SOF)                         | 6-26 |
| RESON1 analysis method (RESO FQP)                     | 6-26 |
| Frequency result display place number assignment      |      |
| (RESO DGT)                                            | 6-26 |
| Calculation result read (RESO?/RESR?)                 | 6-26 |
| Limit test function -LIMIT                            | 6-28 |
| Limit test function ON/OFF (LIMT)                     | 6-28 |
| Line type assignment (LMTP)                           | 6-28 |
| Single line setting (LSIU/LSIL)                       | 6-28 |
| Single line clear (LCLU/LCLL)                         | 6-28 |
| Segment line setting (LMTU/LMTL)                      | 6-29 |
| Segment line clear (LCLU/LCLL)                        | 6-29 |
| Limit test result read (LMTS?)                        | 6-29 |
| Beep setting (BPON)                                   | 6-29 |
|                                                       |      |

| Hardcopy/copy control -COPY/COPY CONT    | 6-30 |
|------------------------------------------|------|
| Printer GPIB address setting (PRIA)      | 6-30 |
| Printer type (PRTM)                      | 6-30 |
| Form feed ON/OFF (PFF)                   | 6-30 |
| Talker terminator switching (TRM)        | 6-30 |
| Time-out setting (GTM)                   | 6-30 |
| Hardcopy output port selection (PORT)    | 6-30 |
| Hardcopy start/stop (COPY)               | 6-30 |
| Video plotter dedicated copy start (VPT) | 6-30 |
| Hard copy in the BMP format              | 6-30 |
| Color selection (BMP COLOR)              | 6-30 |
| Color data compression (BMP COMP)        | 6-30 |
| Copy No. (BMP COPYNO)                    | 6-30 |
| SAVE/RECALL -SAVE/RECALL                 | 6-31 |
| Save item selection                      |      |
| (SV1/SV2/SV3/SV4/SV5/SV6/SVRBW/SVWAI)    | 6-31 |
| Drive selection (PMCS)                   | 6-31 |
| Media format (MA4)                       | 6-31 |
| Directory creation (MKDR)                | 6-31 |
| Save execution (SVM)                     | 6-32 |
| Recall execution (RCM)                   | 6-32 |
| Delete execution (DLM)                   | 6-32 |
| Index recall display (INDX)              | 6-32 |
| Save items list display (RC2/RC3)        | 6-32 |
| Media error information read (PER?)      | 6-32 |
| Title -SAVE/RECALL                       | 6-33 |
| Display ON/OFF (TTL)                     | 6-33 |
| Title character input (TEN)              | 6-33 |
| Clock -SYSTEM                            | 6-33 |
| Year, Month, Day (DATE)                  | 6-33 |
| Hour, Minute, Second (TIME)              | 6-33 |
| Display color setting -SYSTEM            | 6-33 |
| Color setting for each screen (CPLL)     | 6-33 |
| Back light -BACK LIGHT                   | 6-34 |
| Back light ON/OFF (BLIGHT)               | 6-34 |
| РТА -РТА                                 | 6-34 |
| PTA ON/OFF (PTA)                         | 6-34 |
| PTL mode (PTL)                           | 6-34 |
| PTA dual-port memory (PMY)               | 6-34 |
| Trace data/normalize data read format    | 6-35 |
| Read format assignment 1 (BIN)           | 6-35 |
| Read format assignment 2 (FRMT)          | 6-35 |

| Access channel selection                                      | 6-35 |
|---------------------------------------------------------------|------|
| Access channel selection (SRW)                                | 6-35 |
| Data table write protect                                      | 6-35 |
| Data table protect (TBGRD)                                    | 6-35 |
| Trace data read and write                                     | 6-36 |
| TRACE-A/-B (XMA/XMB)                                          | 6-36 |
| Normalize data read and write                                 | 6-37 |
| TRACE-A/TRACE-B (SMA/SMB)                                     | 6-37 |
| Frequency table data read and write                           | 6-38 |
| Assigned channel side/CH 1 side/CH 2 side                     |      |
| (FQM/FQMA/FQMB)                                               | 6-38 |
| Level table data read and write                               | 6-39 |
| Assigned channel side/CH 1 side/CH 2 side                     |      |
| (LVM/LVMA/LVMB)                                               | 6-39 |
| RBW table data read and write                                 | 6-40 |
| Assigned channel side (RBTB)                                  | 6-40 |
| User wait table data read and write                           | 6-40 |
| Assigned channel side (UWTB)                                  | 6-40 |
| Common commands                                               | 6-41 |
| *RST/*IDN?/*TST?/*OPC/*WAI/*CLS/*STB?                         | 6-41 |
| *SRE/*ESR/*ESE/*PSC/*TRG/*RCL/*SAV                            | 6-42 |
| *OPT?                                                         | 6-43 |
| GPIB dedicated command                                        | 6-44 |
| Event Status register 1: PTA Status register (ESR1?)          | 6-44 |
| Enable register 1 (ESE1)                                      | 6-44 |
| Event Status register 2: End Status register (ESR2?)          | 6-44 |
| Enable register 2 (ESE2)                                      | 6-44 |
| Event Status register 3: System Error Status register (ESR3?) | 6-44 |
| Enable register 3 (ESE3)                                      | 6-44 |
| Drawing-related command                                       | 6-45 |
| PTA drawing origin moving (CORG)                              | 6-45 |
| Screen deletion (CFL)                                         | 6-45 |
| Character drawing (DCH)                                       | 6-45 |
| Line drawing (DLN)                                            | 6-45 |
| Quadrilateral drawing (DRC)                                   | 6-45 |
| Circle drawing (DCR)                                          | 6-46 |
| Arc drawing (DAR)                                             | 6-46 |
| $\bigcirc$ and $	imes$ drawing (DJG)                          | 6-46 |
| Color fill drawing (PNT)                                      | 6-47 |
| Arithmetic function                                           | 6-48 |
| Function of calculating the group delay time (GPDLY)          | 6-48 |

## MS4630B List of device messages

| Function summary                    | Control command          | Query   | Response   |
|-------------------------------------|--------------------------|---------|------------|
| ■ Initialization -PRESET            |                          |         |            |
| Device initialization               | INI                      | ****    | *****      |
|                                     |                          |         |            |
| Measurement channel -MENU           |                          |         |            |
| Measurement channel selection       | SELCH n                  | SELCH?  | SELCH n    |
|                                     | 0: CH1&CH2               |         |            |
|                                     | 1:CH1                    |         |            |
|                                     | 2: CH2                   |         |            |
|                                     |                          |         |            |
| Active channel selection            | ACCH n                   | ACCH?   | ACCH n     |
|                                     | 1: CH1 / 2:CH2           |         |            |
| Coupled channel ON/OFF              | CPL CH ON                | CPL CH? | CPL CH ON  |
|                                     | CPL CH OFF               |         | CPL CH OFF |
|                                     |                          |         |            |
| ■ Measuring (analytical) port -MEAS |                          |         |            |
| Analytical port                     | MEASPT n                 | MEASPT? | MEASPT n   |
|                                     | 0: TB/TA                 |         |            |
|                                     | 1:TA/R                   |         |            |
|                                     | 2: TB/R                  |         |            |
|                                     | 3: TA                    |         |            |
|                                     | 4: TB                    |         |            |
|                                     | 5: R                     |         |            |
|                                     |                          |         |            |
| ■ Impedance measurement             |                          |         |            |
| Measuring method selection (SYSTEM) | IMPMD n                  | IMPMD?  | IMPMD n    |
|                                     | 1: Reflection (bridge)   |         |            |
|                                     | 2: Transmission (PI-NET) |         |            |

# ■ Measuring format -FORMAT

| Function summary               | Control command         | Query | Response |
|--------------------------------|-------------------------|-------|----------|
| Measuring format -FORMAT       |                         |       |          |
| Measuring format               | TRC n                   | TRC?  | TRC n    |
|                                | 0: LOGMAG               |       |          |
|                                | 1: PHASE                |       |          |
|                                | 2: DELAY                |       |          |
|                                | 3: MAG & PHASE          |       |          |
|                                | 4: MAG & DELAY          |       |          |
|                                | 5: POLAR                |       |          |
|                                | 6: IMPD CHART           |       |          |
|                                | 7: ADMT CHART           |       |          |
|                                | 8: VSWR                 |       |          |
|                                | 9: LINMAG               |       |          |
|                                | 10: LIN & PHASE         |       |          |
|                                | 11: LIN & DELAY         |       |          |
|                                | 12: REAL                |       |          |
|                                | 13: IMAG                |       |          |
|                                | 14: REAL & IMAG         |       |          |
|                                | 15: LOG Z               |       |          |
|                                | 16: LOG Z & θ           |       |          |
|                                | 17:Q                    |       |          |
|                                | 18: LOG Z & Q           |       |          |
| Impedance marker display form  | IMV n                   | IMV?  | IMV n    |
|                                | $0: \mathbb{Z}/\theta$  |       |          |
|                                | 1: Rs/Ls, Cs            |       |          |
|                                | 2: Q/D                  |       |          |
|                                | 3: R+jX                 |       |          |
| Admittance marker display form | ADV n                   | ADV?  | ADV n    |
|                                | $0: Y/\theta$           |       |          |
|                                | 1: Rp/Lp,Cp             |       |          |
|                                | 2: Q/D                  |       |          |
|                                | 3: G+jB                 |       |          |
| Phase offset                   | PHOF r or               | PHOF? | PHOF r   |
|                                | PHO r                   | PHO?  | PHO r    |
|                                | r=-180  to  +180  (deg) |       |          |

| Function summary             | Control command                                                                                                                                          | Query | Response |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| ■ Frequency -FREQUENCY, SPAN |                                                                                                                                                          |       |          |
| Frequency band setting mode  | FRQ n<br>0: CF/SPAN<br>1: START/STOP                                                                                                                     | FRQ?  | FRQ n    |
| Linear/log sweep switching   | LOG n<br>0: LIN / 1:LOG                                                                                                                                  | LOG?  | LOG n    |
| Center frequency             | CNF f<br>f=0 to 300 000 000(Hz)                                                                                                                          | CNF?  | CNF f    |
| Frequency span               | SPF f<br>f=0 to 300 000 000(Hz)                                                                                                                          | SPF?  | SPF f    |
| Start frequency              | STF f<br>In the case of linear sweeping<br>f=0 to 300 000 000(Hz)<br>In the case of log sweeping<br>f=10Hz to 100MHz<br>(1 and 10 steps)                 | STF?  | STF f    |
| Stop frequency               | SOF f<br>In the case of linear sweeping<br>f=0 to 300 000 000(Hz)<br>In the case of log sweeping<br>f=100Hz to 100MHz<br>(1 and 10 steps)<br>And 300 MHz | SOF?  | SOF f    |

## ■ Waveform averaging/smoothing -AVG

| Function summary                  | Control command     | Query | Response |
|-----------------------------------|---------------------|-------|----------|
| ■ Waveform averaging/             |                     |       |          |
| smoothing -AVG                    |                     |       |          |
| Averaging                         | AVG r               | AVG?  | AVG r    |
|                                   | r=1 to 1000         |       |          |
|                                   |                     |       |          |
| Smoothing                         | SMT r               | SMT?  | SMT r    |
|                                   | r=0 to 50 (%) Note  |       |          |
|                                   |                     |       |          |
| Delay aperture                    | HDRG r              | HDRG? | HDRG r   |
|                                   | r=0.2 to 20 (%)     |       |          |
|                                   |                     |       |          |
| Resolution bandwidth auto-setting | AU2 n               | AU2?  | AU2 n    |
|                                   | 0: OFF (MANUAL)     |       |          |
|                                   | I:ON (AUTO)         |       |          |
| Passivian handwidth (DDW)         | DDW                 |       | DDW -    |
| Resolution bandwidth (RBw)        |                     | KBW?  | KBW N    |
|                                   | 0: 3HZ              |       |          |
|                                   | 1.10HZ<br>2:30Hz    |       |          |
|                                   | 2. JOHZ<br>3: 100Hz |       |          |
|                                   | 4: 300Hz            |       |          |
|                                   | 5: 1kHz             |       |          |
|                                   | 6: 3kHz             |       |          |
|                                   | 7: 10kHz            |       |          |
|                                   | 8: 500Hz            |       |          |
|                                   | 9: 2kHz             |       |          |
|                                   | 10:4kHz             |       |          |
|                                   | 11:5kHz             |       |          |
|                                   | 12:20kHz            |       |          |
|                                   | 13: AUTO            |       |          |
|                                   |                     |       |          |
| Averaging type                    | AVT n               | AVT?  | AVT n    |
|                                   | n 0: SUM            |       |          |
|                                   | 1: MAX HOLD         |       |          |
|                                   | 2: MIN HOLD         |       |          |

## MS4630B List of device messages (Continued)

#### Note:

The setting range depends on the number of measurement points.

#### MS4630B List of device messages (Continued)

| Function summary         | Control command         | Query | Response                      |
|--------------------------|-------------------------|-------|-------------------------------|
| ■ Sweep control -SWEEP   |                         |       |                               |
| Sweep mode setting       | SW2 n                   | SW2?  | SW2 n                         |
|                          | 0: REPEAT               |       |                               |
|                          | 1: SINGLE               |       |                               |
| Sweep start/execution    |                         |       |                               |
| Starting repeat sweep    | SWP 0                   | SWP?  | 0:Sweep end                   |
| Starting single sweep    | SWP 1                   |       | (1:Sweeping)                  |
| Executing single sweep   | SWP 2 Note              |       | No response data is generally |
|                          |                         |       | returned during sweeping.     |
| Sween stop/reset/restart | SW3 n                   |       |                               |
|                          | 0: STOP                 |       |                               |
|                          | 1: RESET                |       |                               |
|                          | 2: CONTINUE             |       |                               |
|                          |                         |       |                               |
| Sweep time auto-setting  | AU1 n                   | AU1?  | AU1 n                         |
|                          | 0: OFF(MANUAL)          |       |                               |
|                          | 1:ON(AUTO)              |       |                               |
|                          |                         |       |                               |
| Sweep time               | SWI't                   | SW1?  | SWIT                          |
|                          | t: 1 to 99 000 000 (ms) |       |                               |
| Total sweep/marker sweep | SW1 n                   | SW1?  | SW1 n                         |
| L L                      | 0: FULL SWEEP           |       |                               |
|                          | 1: MARKER SWEEP         |       |                               |
|                          |                         |       |                               |

#### Note:

The single sweep start command "SWP 1" only starts the sweep.

The single sweep execution command "SWP 2" both starts and ends the sweep.

Therefore, if "SWP 2" is used to execute the sweep, no further device message can be received until the sweep is ended.

## ■ Sweep control -SWEEP

| Function summary       | Control command | Query  | Response |
|------------------------|-----------------|--------|----------|
| ■ Sweep control -SWEEP |                 |        |          |
| Measuring point        | MEP n           | MEP?   | MEP n    |
|                        | 0:11            |        |          |
|                        | 1:21            |        |          |
|                        | 2:51            |        |          |
|                        | 3:101           |        |          |
|                        | 4:251           |        |          |
|                        | 5:501           |        |          |
|                        | 6:1001          |        |          |
|                        |                 |        |          |
| Breakpoint             | BKP r           | BKP?   | BKP n    |
|                        | r=1 to 1001     |        |          |
|                        |                 |        |          |
| External trigger sweep | TRGMD n         | TRGMD? | TRGMD n  |
|                        | 0: OFF (INT)    |        |          |
|                        | 1: ON (EXT)     |        |          |
|                        |                 |        |          |
| External trigger mode  | TRGSW n         | TRGSW? | TRGSW n  |
|                        | 0: NORMAL       |        |          |
|                        | 1: STEP         |        |          |
|                        | 2: STATE        |        |          |
|                        |                 |        |          |
| External trigger edge  | TRGEG n         | TRGEG? | TRGEG n  |
|                        | 0: RISE         |        |          |
|                        | 1:FALL          |        |          |

#### MS4630B List of device messages (Continued)

| Function summary           | Control command         | Query   | Response |
|----------------------------|-------------------------|---------|----------|
| ■ Output/input -OUT/INPUT  |                         |         |          |
| Output power               | OPL r                   | OPL?    | OPL r    |
|                            | r=0 to 21 (dBm) Note 1  |         |          |
|                            |                         |         | ~~~~~    |
| Source power               | SPWR r                  | SPWR?   | SPWR r   |
|                            | r=0 to 21 (dBm) Note 1  |         |          |
| Output offset              | OOFS r                  | OOFS?   | OOFS r   |
|                            | r=-100  to  +100  (dB)  |         |          |
|                            |                         |         |          |
| Output attenuator (Opt 10) | OATT r Note 2           | OATT?   | OATT r   |
|                            | r=0 to 70 (dB)          |         |          |
|                            | 10dB STEP               |         |          |
| Dowor oween ON/OEE         | I CW -                  | 1 630/9 | I CW -   |
| Power sweep ON/OFF         | 0. OFF/1.ON             |         | LSWI     |
|                            | 0.011/1.010             |         |          |
| Power sweep start power    | STL r                   | STL?    | STL r    |
|                            | r=0 to +21 (dBm) Note 1 |         |          |
|                            |                         |         |          |
| Power sweep end power      | SOL r                   | SOL?    | SOL r    |
|                            | r=0 to +21 (dBm) Note 1 |         |          |

#### Note 1:

Indicates the setting range of output port A without an Opt 10 output attenuator.

The setting range varies depending on whether an Opt 10 output attenuator is installed and how the output port is set.

#### Note 2:

This setting is enabled only if an Opt 10 output attenuator is installed.

# ■ Output/input -OUT/INPUT

| Function summary          | Control command       | Query   | Response |
|---------------------------|-----------------------|---------|----------|
| ■ Output/input -OUT/INPUT |                       |         |          |
| Power sweep step level    | SEL r                 | SEL?    | SEL r    |
|                           | r=0  to  +21  (dB)    |         |          |
| Output port switching     | OUTCND n              | OUTCND? | OUTCND n |
|                           | 0: port A/1: port B   |         |          |
| Least series (D)          | LAD -                 |         |          |
| Input range (K)           |                       |         |          |
|                           | 0:0 dBm/1:+20 dBm     |         |          |
| Input range (TA)          | IATA n or             | IATA?   | IATA n   |
|                           | IRG n                 | IRG?    | IRG n    |
|                           | 0:0 dBm/1:+20 dBm     |         |          |
| Input range (TB)          | IATB n                | IATB?   | IATB n   |
|                           | 0.0 dBm/1.+20 dBm     | IIID.   |          |
|                           | 0.0 dBill 1.120 dBill |         |          |
| Input impedance (R)       | IMPR n                | IMPR?   | IMPR n   |
|                           | 0: 50/75 Ohm          |         |          |
|                           | 1:1M Ohm              |         |          |
| Input impedance (TA)      | IMPTA n               | IMPTA?  | IMPTA n  |
|                           | 0: 50/75 Ohm          |         |          |
|                           | 1:1M Ohm              |         |          |
|                           | or                    |         |          |
|                           | IMP n                 | IMP?    | IMP n    |
|                           | n 0: 50/75 Ohm        |         |          |
|                           | (1:50/75 Ohm)         |         |          |
|                           | 2:1M Ohm              |         |          |
| Least immediance (TD)     |                       |         |          |
| Input Impedance (IB)      |                       | IMPIB!  |          |
|                           | 0: 50/75 Unm          |         |          |
|                           |                       |         |          |

| Function summary        | Control command                 | Query | Response                             |
|-------------------------|---------------------------------|-------|--------------------------------------|
| Output/input -OUT/INPUT |                                 |       |                                      |
| Standard impedance      | RIMP r<br>r=0.1 to 10 000 (Ohm) | RIMP? | RIMP r                               |
| Input overload state    | *****                           | OVL?  | OVL n<br>n 0: NORMAL<br>1: OVER LOAD |

## ■ Calibration -CALIBRATION

| Function summary                        | Control command                  | Query | Response                      |
|-----------------------------------------|----------------------------------|-------|-------------------------------|
| ■ Calibration -CALIBRATION              |                                  |       |                               |
| $X \rightarrow S$ normalize sweep start | CAL                              | CAL?  | 0:Sweep end                   |
|                                         | (Sweep start only)               |       | (1:Sweeping)                  |
|                                         | CAL 2                            |       | No response data is generally |
|                                         | (with sweep end synchronization) |       | returned during sweeping.     |
| X-S normalize function ON/OFF           | CXS n                            | CXS?  | CXS n                         |
|                                         | 0:OFF/1:ON                       |       |                               |
| Calibration type selection              | ECL n                            | ECL?  | ECL n                         |
|                                         | n 0: RESPONSE                    |       |                               |
|                                         | 1: 1PORT OSL                     |       |                               |
|                                         | 2: (Undefined)                   |       |                               |
|                                         | 3: 1PATH 2PORT                   |       |                               |
|                                         | 4: RESPONSE &                    |       |                               |
|                                         | ISOLATION                        |       |                               |
|                                         | 5: PI-NET                        |       |                               |
| Calibration data uptake sweep start     | COR n                            | COR?  | 0:Sweep end                   |
|                                         |                                  |       | (1:Sweeping)                  |
| Response calibration                    | 0: Response data                 |       | No response data is generally |
| 1PORT OSL calibration                   | 0: OPEN data                     |       | returned during sweeping.     |
|                                         | 1: SHORT data                    |       |                               |
|                                         | 2: LOAD data                     |       |                               |
| 1PATH 2PORT calibration                 | 0: THROUGH data                  |       |                               |
|                                         | 1: OPEN data                     |       |                               |
|                                         | 2: SHORT data                    |       |                               |
|                                         | 3: LOAD data                     |       |                               |
|                                         |                                  |       |                               |
| Response and isolation calibration      | 0: RESPONSE data                 |       |                               |
|                                         | 1: ISOLATION data                |       |                               |
| PI-NET calibration                      | 0: OPEN data                     |       |                               |
|                                         | 1: SHORT data                    |       |                               |

| Function summary                 | Control command        | Query | Response |
|----------------------------------|------------------------|-------|----------|
| ■ Calibration -CALIBRATION       |                        |       |          |
| Calibration ON/OFF               | CORR n                 | CORR? | CORR n   |
|                                  | 0:OFF/1:ON             |       |          |
|                                  |                        |       |          |
| Device parameter for calibration |                        |       |          |
| Open device C0 (E-15)            | CC0 r                  | CC0?  | CC0 r    |
| Open device C1 (E-27)            | CC1 r                  | CC1?  | CC1 r    |
| Open device C2 (E-36)            | CC2 r                  | CC2?  | CC2 r    |
| Open device C3 (E-45)            | CC3 r                  | CC3?  | CC3 r    |
|                                  | r=-999.999 to +999.999 |       |          |
|                                  |                        |       |          |
| Device parameter for calibration |                        |       |          |
| Open device offset length        | COO r                  | COO?  | COO r    |
| Short device offset length       | COS r                  | COS?  | COS r    |
| Through line offset length       | COT r                  | COT?  | COT r    |
|                                  | r=-9999.99 to +9999.99 |       |          |

## ■ Waveform display scale -SCALE

| Function summary                | Control command            | Query | Response |
|---------------------------------|----------------------------|-------|----------|
| ■ Waveform display scale -SCALE |                            |       |          |
| Auto-scale                      | SAU                        | ***** | *****    |
|                                 |                            |       |          |
| Display scale                   |                            |       |          |
| Active TRACE side               | SCAL n                     | SCAL? | SCAL n   |
| TRACE-A side                    | SCA n                      | SCA?  | SCA n    |
| TRACE-B side                    | SCB n                      | SCB?  | SCB n    |
|                                 |                            |       |          |
| dB unit                         | n=0 to 11                  |       |          |
|                                 | 0:0.01dB/div               |       |          |
|                                 | After this, changes are in |       |          |
|                                 | steps of 1, 2, or 5        |       |          |
|                                 |                            |       |          |
| deg unit                        | n=0 to 11                  |       |          |
|                                 | 0:0.01deg/div              |       |          |
|                                 | After this, changes are in |       |          |
|                                 | steps of 1, 2, or 5        |       |          |
|                                 |                            |       |          |
| sec unit, absolute number       | n=0 to 11                  |       |          |
|                                 | 0:measuring resolution*    |       |          |
|                                 | 100/div                    |       |          |
|                                 | After this, changes are in |       |          |
|                                 | steps of 1, 2, or 5        |       |          |
|                                 |                            |       |          |
| Ohm unit                        | n=1,2,4,5,8,10             |       |          |
|                                 | DECADE number in           |       |          |
|                                 | logarithmic scale is set   |       |          |

| Function summary                 | Control command                                                                             | Query | Response |
|----------------------------------|---------------------------------------------------------------------------------------------|-------|----------|
| ■ Waveform display scale -SCALE  |                                                                                             |       |          |
| Display offset                   |                                                                                             |       |          |
| Active TRACE side                | OFST r                                                                                      | OFST? | OFST r   |
| TRACE-A side                     | OFA r                                                                                       | OFA?  | OFA r    |
| TRACE-B side                     | OFB r                                                                                       | OFB?  | OFB r    |
| dB, deg unit                     | r=-800.000 to +800.000                                                                      |       |          |
| sec unit, absolute number        | r=measuring resolution<br>$\times$ (±8000000) range                                         |       |          |
| Ohm unit                         | r= 1m to 100M (Ohm)<br>1, 10, 100 STEP<br>Scale bottom value in<br>logarithmic scale is set |       |          |
| Display offset (reference point) | OFS n<br>n 0: center line<br>1: upper bottom line<br>2: lower bottom line                   | OFS?  | OFS n    |
|                                  | OFLN r<br>r=0 to 10 (line)                                                                  | OFLN? | OFLN r   |
| Electric length compensation     | ELG r<br>r=-999 999<br>to +999 999 (m)                                                      | ELG?  | ELG r    |

#### ■ Trace (waveform) -TRACE

| Function summary            | Control command                                                                              | Query | Response |
|-----------------------------|----------------------------------------------------------------------------------------------|-------|----------|
| ■ Trace (waveform) -TRACE   |                                                                                              |       |          |
| Active trace                | ACTR n<br>0: TRACE-A<br>1: TRACE-B                                                           | ACTR? | ACTR n   |
| Split display ON/OFF        | DF2 n<br>0: OFF/1:ON                                                                         | DF2?  | DF2 n    |
| Waveform storage ON/OFF     | STOR n<br>0: OFF/1:ON                                                                        | STOR? | STOR n   |
| Overwrite display ON/OFF    |                                                                                              |       |          |
| Active TRACE side           | OVP n                                                                                        | OVP?  | OVP n    |
| TRACE-A side                | OVPA n                                                                                       | OVPA? | OVPA n   |
| TRACE-B side                | OVPB n<br>0: OFF/1:ON                                                                        | OVPB? | OVPB n   |
| Grid type                   | DF1 n<br>0: ALL<br>1: CENTER only<br>2: FRAME only                                           | DF1?  | DF1 n    |
| Display item selection      | DF4 n                                                                                        | DF4?  | DF4 n    |
| Delete item selection       | DF3 n<br>n=1 to 13<br>Number of concerned item<br>Note                                       | DF3?  | DF3 n    |
| DISPLAY ALL function ON/OFF | DAS n<br>0: OFF<br>(only selected items are displayed)<br>1: ON<br>(all items are displayed) | DAS?  | DSA n    |

#### MS4630B List of device messages (Continued)

#### Note:

For the display/delete items, see the subsection "CER and CRN subroutines" in Section 5.2 "System Subroutine" in the Remote Control (PTA Control) manual.

Only if the DISPLAY ITEM function is turned OFF, the selected items can be displayed or deleted.

| Function summary          | Control command                                              | Query | Response |
|---------------------------|--------------------------------------------------------------|-------|----------|
| ■ Trace (waveform) -TRACE |                                                              |       |          |
| Subtrace ON/OFF           | STR n                                                        | STR?  | STR n    |
|                           | $\begin{array}{c} 0: OFF \\ 1: MT \rightarrow T \end{array}$ |       |          |
|                           | 2: MT=ST                                                     |       |          |
|                           | 3: MT=MT-ST                                                  |       |          |
|                           | 4: ON                                                        |       |          |

#### ■ Marker -MKR

| Function summary                      | Control command         | Query                   | Response      |
|---------------------------------------|-------------------------|-------------------------|---------------|
| ■ Marker -MKR                         |                         |                         |               |
| Active marker value read              |                         |                         |               |
| Active TRACE side                     | *****                   | MKV?                    | value         |
| TRACE-A side                          | *****                   | MVA?                    | value         |
| TRACE-B side                          | *****                   | MVB?                    | value         |
|                                       |                         |                         |               |
| Multi-marker value read               |                         |                         |               |
| Active TRACE side                     | *****                   | MKV? 0, n               | valueA,valueB |
| TRACE-A side                          | *****                   | MKV? 1, n               | valueA        |
| TRACE-B side                          | *****                   | MKV? 2, n               | valueB        |
|                                       |                         | n=0 to 9: marker number |               |
|                                       |                         |                         |               |
| Active marker frequency read and      |                         |                         |               |
| setting (frequency)                   |                         |                         |               |
| Active TRACE side                     | MKF f                   | MKF?                    | f             |
|                                       |                         |                         |               |
| Multi-marker frequency read and       |                         |                         |               |
| setting (frequency)                   |                         |                         |               |
| Active TRACE side                     | MKF 0, n, f             | MKF? 0, n               | fA, fB        |
| TRACE-A side                          | MKF 1, n, f             | MKF? 1, n               | fA            |
| TRACE-B side                          | MKF 2, n, f             | MKF? 2, n               | fB            |
|                                       | n=0 to 9: marker number | n=0 to 9: marker number |               |
|                                       | f: frequency            |                         |               |
|                                       |                         |                         |               |
| Multi-marker setting and read (point) | MSET 0, n, p            | MSET? 0, n              | MSET 0, n, p  |
|                                       | n=0 to 9: marker number |                         |               |
|                                       | p=0 to 1000: point      |                         |               |
|                                       |                         |                         |               |
| Multi-marker setting and read         | MSEI I, n, f            | MSE1? 1, n              | MSE1? 1, n, f |
| (frequency)                           | n=0 to 9: marker number |                         |               |
|                                       | T: frequency            |                         |               |
| Multi markar ralassa                  | MDST n                  | ****                    | ****          |
| winn-marker release                   | n=0 to 0: mortor number |                         |               |
|                                       | n=0 to 9: marker number |                         |               |

| Function summary                | Control command             | Query    | Response                  |
|---------------------------------|-----------------------------|----------|---------------------------|
| ■ Marker -MKR                   |                             |          |                           |
| Reference marker value read     |                             |          |                           |
| TRACE-A side                    | *****                       | RFA?     | valueA                    |
| TRACE-B side                    | *****                       | RFB?     | valueB                    |
|                                 |                             |          |                           |
| Zero marker value read          |                             |          |                           |
| TRACE-A side                    | *****                       | ZRA?     | valueA                    |
| TRACE-B side                    | *****                       | ZRB?     | valueB                    |
|                                 |                             |          |                           |
| Marker ON/OFF state read        | ******                      | MRST? 1  | b (10 digits)             |
|                                 |                             |          | first digit: marker No. 9 |
|                                 |                             |          | last digit: marker No. 0  |
|                                 |                             |          | 0:OFF/1:ON                |
|                                 |                             |          |                           |
| Active marker No. read          | *****                       | MRST? 2  | n: marker No.             |
|                                 |                             |          |                           |
| Reference marker position       | RMK p                       | RMK?     | RMK p                     |
| setting/read (point)            | p=0 to 1000                 |          |                           |
|                                 |                             |          |                           |
| Reference marker number setting | RMKR n                      | RMKR?    | RMKR n                    |
|                                 | n=0 to 9: marker number     |          | 00 to 09                  |
|                                 |                             |          |                           |
| Active marker position          | СМК р                       | CMK?     | СМК р                     |
| setting/read (point)            | p=0 to 1000                 |          |                           |
|                                 |                             |          |                           |
| Coupled marker ON/OFF           | CPL MKR,OFF                 | CPL? MKR | CPL MKR, OFF              |
|                                 | CPL MKR,ON                  |          | CPL MKR, ON               |
| Madaar dalata                   | MKD a                       | MKD9     | MKD a                     |
| Marker delete                   | MKD II                      | MKD?     | MKD n                     |
|                                 | 0. display/1: delete        |          |                           |
| Marker setting mode (SVSTEM)    | MKPMD n                     | MKBMD?   | MKRMD n                   |
| marker setting mode (STSTEM)    | 0: display position (DONIT) |          |                           |
|                                 | 1: frequency (EDEO)         |          |                           |
|                                 | 1: Irequency (FREQ)         |          |                           |
#### ■ Marker function-FCTN

| Function summary              | Control command     | Query   | Response |
|-------------------------------|---------------------|---------|----------|
| ■ Marker function-FCTN        |                     |         |          |
| Marker mode                   | MKR n               | MKR?    | MKR n    |
|                               | 0: NORMAL MKR       |         |          |
|                               | 1: DELTA MKR        |         |          |
|                               | 2: ZERO MKR         |         |          |
|                               |                     |         |          |
| Functions using marker values | MKR n $n=3$ to $12$ | ******  | *****    |
| MKR→MAX                       | MKR 3               |         |          |
| MKR→MIN                       | MKR 4               |         |          |
| MKR CHANGE                    | MKR 5               |         |          |
| MKR→CF                        | MKR 6               |         |          |
| DELTA→SPAN                    | MKR 7               |         |          |
| MKR→OFS                       | MKR 8               |         |          |
| MKR→+PEAK                     | MKR 9               |         |          |
| MKR→-PEAK                     | MKR 10              |         |          |
| TRACK +PEAK                   | MKR 11              |         |          |
| TRACK -PEAK                   | MKR 12              |         |          |
|                               |                     |         |          |
| Marker tracking function      | TRKMOD n            | TRKMOD? | TRKMOD n |
|                               | 0: OFF              |         |          |
|                               | 1: TRACK +PEAK      |         |          |
|                               | 2: TRACK -PEAK      |         |          |
|                               |                     |         |          |
| Marker list display           | MKLST n             | MKLST?  | MKLST n  |
|                               | 0: OFF/1:ON         |         |          |

| Function summary                                                      | Control command                            | Query     | Response    |
|-----------------------------------------------------------------------|--------------------------------------------|-----------|-------------|
| ■ Filter analysis function -FILTER<br>Filter analysis function ON/OFF | FLTR SW, n                                 | FLTR? SW  | FLTR SW, n  |
| Filter center frequency                                               | n 0: OFF/1:ON<br>FLTR CNF, f               | FLTR? CNF | FLTR CNF, f |
| Insertion loss calculation standard                                   | FLTR TYP, n<br>0: FILTER CF                | FLTR? TYP | FLTR TYP, n |
|                                                                       | 1: MAX VALUE                               |           |             |
| Bandwidth calculation standard                                        | FLTR BWR,n<br>0: FILTER CF<br>1: MAX VALUE | FLTR? BWR | FLTR BWR, n |
| X1 dB setting                                                         | FLTR X1D,r<br>r=-200 to +200 (dB)          | FLTR? X1D | FLTR X1D, r |
| X2 dB setting                                                         | FLTR X2D, r<br>r=-200 to +200 (dB)         | FLTR? X2D | FLTR X2D, r |
| Ripple search start frequency                                         | FLTR STF,f<br>f: frequency                 | FLTR? STF | FLTR STF, f |
| Ripple search end frequency                                           | FLTR SOF, f<br>f: frequency                | FLTR? SOF | FLTR SOF, f |
| Ripple resolution                                                     | FLTR RSL, f<br>f: frequency                | FLTR? RSL | FLTR RSL, f |
| Frequency result display place number assignment                      | FLTR DGT, n<br>n=3 to 8                    | FLTR? DGT | FLTR DGT, n |

# ■ Filter analysis function -FILTER

| Function summary                   | Control command | Query     | Response                 |
|------------------------------------|-----------------|-----------|--------------------------|
| ■ Filter analysis function -FILTER |                 |           |                          |
| Calculation result read            |                 |           |                          |
| F0                                 | *****           | FLTR? F0  | frequncy                 |
| FL1                                | *****           | FLTR? FL1 | frequncy                 |
| FR1                                | *****           | FLTR? FR1 | frequncy                 |
| FL2                                | *****           | FLTR? FL2 | frequncy                 |
| FR2                                | *****           | FLTR? FR2 | frequncy                 |
| BW1                                | *****           | FLTR? BW1 | frequncy                 |
| BW2                                | *****           | FLTR? BW2 | frequncy                 |
| RIPPLE                             | *****           | FLTR? RPL | value                    |
| INSERTION LOSS                     | *****           | FLTR? IL  | value                    |
| Q                                  | *****           | FLTR? Q   | value                    |
| SF                                 | *****           | FLTR? SF  | value                    |
| Total result read                  | *****           | RESF?     | f0, bw1, fl1, fr1, bw2,  |
|                                    |                 |           | fl2, fr2, il, rpl, q, sf |

| Function summary                   | Control command | Query     | Response    |
|------------------------------------|-----------------|-----------|-------------|
| Resonator analysis function        |                 |           |             |
| -RESONATOR                         |                 |           |             |
| Resonator analysis function ON/OFF | RESO SW, n      | RESO? SW  | RESO SW, n  |
|                                    | 0: OFF/1:ON     |           |             |
|                                    |                 |           |             |
| Analysis method selection          | RESO TYP, n     | RESO? TYP | RESO TYP, n |
|                                    | 1: RESON1       |           |             |
|                                    | 2: RESON2       |           |             |
|                                    |                 |           |             |
| Analysis band start frequency      | RESO STF, f     | RESO? STF | RESO STF, f |
|                                    | f: frequency    |           |             |
|                                    |                 |           |             |
| Analysis band end frequency        | RESO SOF, f     | RESO? SOF | RESO SOF, f |
|                                    | f: frequency    |           |             |
|                                    |                 |           |             |
| RESON1 analysis method             | RESO FQP, n     | RESO? FQP | RESO FQP, n |
|                                    | 0: ZERO PHASE   |           |             |
|                                    | 1: MIN/MAX IMPD |           |             |
|                                    |                 |           |             |
| Frequency result display place     | RESO DGT, n     | RESO? DGT | RESO DGT, n |
| number assignment                  | n=3 to 8        |           |             |
| Calculation result read            |                 |           |             |
| Es                                 | ****            | RESO? ES  | frequency   |
| Er                                 | *****           | RESO? FR  | frequency   |
| Ea                                 | *****           | RESO? FA  | frequency   |
| En En                              | *****           | RESO? FN  | frequency   |
| Em                                 | *****           | RESO? FM  | frequency   |
| 7r                                 | *****           | RESO? ZR  | value       |
| Za                                 | *****           | RESO? ZA  | value       |
| Zn                                 | *****           | RESO? ZN  | value       |
| Zm                                 | ****            | RESO? ZM  | value       |
| R1                                 | ****            | RESO? R1  | value       |
| C0                                 | ****            | RESO? CO  | value       |
| C1                                 | *****           | RESO? C1  | value       |
| L1                                 | *****           | RESO? L1  | value       |
| 0                                  | *****           | RESO? O   | value       |
| ۲.                                 |                 |           |             |

# ■ Resonator analysis function-RESONATOR

| Function summary              | Control command | Query | Response                    |
|-------------------------------|-----------------|-------|-----------------------------|
| ■ Resonator analysis function |                 |       |                             |
| -RESONATOR                    |                 |       |                             |
| Total result read             |                 |       |                             |
| RESON1-ZERO PHASE             | *****           | RESR? | fr, zr, fa, za              |
| RESON1-MIN/MAX IMPD           | ******          | RESR? | fn, zn, fm, zm              |
| RESON2                        | *****           | RESR? | fr, zr, fa, za, fs, r1, 11, |
|                               |                 |       | c0, c1, q                   |

| Function summary                        | Control command               | Query                                     | Response                                |
|-----------------------------------------|-------------------------------|-------------------------------------------|-----------------------------------------|
| ■ Limit test function -LIMIT            |                               |                                           |                                         |
| Limit test function ON/OFF              | LIMT n                        | LIMT?                                     | LIMT n                                  |
|                                         | 0: OFF/1:ON                   |                                           |                                         |
|                                         |                               |                                           |                                         |
| Line type assignment                    | LMTP t, nX                    | LMTP? 0                                   | LMTP 1, nA;                             |
|                                         | t:trace assignment            |                                           | LMTP 2, nB                              |
|                                         | 0: TRACE-A/B                  |                                           |                                         |
|                                         | 1: TRACE-A                    | LMTP? 1                                   | LMTP 1, nA                              |
|                                         | 2: TRACE-B                    |                                           |                                         |
|                                         | nX:line type                  | LMTP? 2                                   | LMTP 2, nB                              |
|                                         | 0: SILGLE                     |                                           |                                         |
|                                         | 1:SEGMENTED                   |                                           |                                         |
| Single line upper limit value setting   | I SIII t rY                   | 1 \$1112.0                                |                                         |
| Single line - upper linit value setting | t:trace assignment            |                                           | LSIU 2 rB                               |
|                                         | 0. TRACE-A/B                  |                                           |                                         |
|                                         | 1: TRACE-A                    | LSIU? 1                                   | LSIU 1. rA                              |
|                                         | 2: TRACE-B                    |                                           |                                         |
|                                         | rX:Upper limit standard value | LSIU? 2                                   | LSIU 2, rB                              |
|                                         |                               |                                           |                                         |
|                                         |                               |                                           |                                         |
| - Clear                                 | LCLU t, 0                     | *****                                     | *****                                   |
|                                         | t: trace assignment           |                                           |                                         |
|                                         |                               |                                           |                                         |
| Single line - lower limit value setting | LSIL t, rX                    | LSIL? n                                   | Same response setting as                |
|                                         | Same parameter settings       | n=0, 1, 2                                 | the single line upper limit             |
|                                         | as the single line upper      |                                           | value setting                           |
|                                         | limit value setting           |                                           |                                         |
|                                         |                               | ﻮﺭ ﺩ, | ***                                     |
| - Clear                                 | LCLL t, 0                     | · ^^~^*****                               | · ^ ^ ^ ^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
|                                         | t: trace assignment           |                                           |                                         |

#### ■ Limit test function-LIMIT

| Limit test function-LIMIT<br>Segment line - upper limit value settingLMTU t, m, f0, r0, f1, r1LMTU? 0, mLMTU 1, f0, r0, f1, r1;<br>LMTU 2, f0, r0, f1, r1ttrace assignment<br>0: TRACE-A/B<br>1: TRACE-A<br>2: TRACE-B<br>m:segment number<br>m=1 to 10<br>f0: start frequency<br>r0: upper limit standard value<br>for the start frequency<br>r1: upper limit standard value<br>for the end frequencyLMTU? 2, mLMTU 2, f0, r0, f1, r1- ClearLCLU t, 1<br>ttrace assignment************************************************************** | Function summary                         | Control command                | Query                                   | Response                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------|-----------------------------------------|-----------------------------------------|
| Segment line - upper limit value settingLMTU t, m, f0, r0, f1, r1LMTU? 0, mLMTU 1, f0, r0, f1, r1;<br>LMTU 2, f0, r0, f1, r1t:trace assignment<br>0: TRACE-A/B<br>1: TRACE-A<br>2: TRACE-BLMTU? 1, mLMTU 1, f0, r0, f1, r1m:segment number<br>m=1 to 10<br>f0: start frequency<br>r0: upper limit standard value<br>for the start frequency<br>r1: upper limit standard value<br>for the end frequencyLMTU? 2, mLMTU 2, f0, r0, f1, r1- ClearLCLU t, 1<br>t:trace assignment*********************************                             | ■ Limit test function-LIMIT              |                                |                                         |                                         |
| LMTU 2, f0, r0, f1, r1t:trace assignment<br>0: TRACE-A/B<br>1: TRACE-A<br>2: TRACE-B<br>m=1 to 10<br>f0: start frequency<br>r0: upper limit standard value<br>for the start frequency<br>r1: upper limit standard value<br>for the end frequencyLMTU? 1, mLMTU 1, f0, r0, f1, r1- ClearLCLU t, 1<br>t:trace assignment*********************************                                                                                                                                                                                   | Segment line - upper limit value setting | LMTU t, m, f0, r0, f1, r1      | LMTU? 0, m                              | LMTU 1, f0, r0, f1, r1;                 |
| t:trace assignment<br>0: TRACE-A/B<br>1: TRACE-A<br>2: TRACE-BLMTU? 1, mLMTU 1, f0, r0, f1, r11: TRACE-A<br>2: TRACE-BLMTU? 2, mLMTU 2, f0, r0, f1, r1m:segment number<br>m=1 to 10<br>f0: start frequency<br>r0: upper limit standard value<br>for the start frequency<br>f1: end frequency<br>r1: upper limit standard value<br>for the end frequencyH- ClearLCLU t, 1<br>t:trace assignment*********************************                                                                                                           |                                          |                                |                                         | LMTU 2, f0, r0, f1, r1                  |
| 0: TRACE-A/BLMTU? 1, mLMTU 1, f0, r0, f1, r11: TRACE-ALMTU? 2, mLMTU 2, f0, r0, f1, r12: TRACE-BLMTU? 2, mLMTU 2, f0, r0, f1, r1m:segment number<br>m=1 to 10<br>f0: start frequency<br>r0: upper limit standard value<br>for the start frequency<br>f1: end frequency<br>r1: upper limit standard value<br>for the end frequencyK- ClearLCLU t, 1<br>t:trace assignment*********************************                                                                                                                                 |                                          | t:trace assignment             |                                         |                                         |
| 1: TRACE-A<br>2: TRACE-B<br>m=1 to 10<br>f0: start frequency<br>r0: upper limit standard value<br>for the start frequency<br>r1: upper limit standard value<br>for the end frequencyLMTU? 2, mLMTU 2, f0, r0, f1, r1- ClearLCLU t, 1<br>t:trace assignment*********************************                                                                                                                                                                                                                                               |                                          | 0: TRACE-A/B                   | LMTU? 1, m                              | LMTU 1, f0, r0, f1, r1                  |
| 2: TRACE-BLMTU? 2, mLMTU 2, f0, r0, f1, r1m:segment number<br>m=1 to 10<br>f0: start frequency<br>r0: upper limit standard value<br>for the start frequency<br>f1: end frequency<br>r1: upper limit standard value<br>for the end frequencyLMTU? 2, mLMTU 2, f0, r0, f1, r1- ClearLCLU t, 1<br>t:trace assignment*********************************                                                                                                                                                                                        |                                          | 1: TRACE-A                     |                                         |                                         |
| m:segment number<br>m=1 to 10<br>f0: start frequency<br>r0: upper limit standard value<br>for the start frequency<br>f1: end frequency<br>r1: upper limit standard value<br>for the end frequency+++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                        |                                          | 2: TRACE-B                     | LMTU? 2, m                              | LMTU 2, f0, r0, f1, r1                  |
| m=1 to 10 f0: start frequency f0: start frequency   r0: upper limit standard value for the start frequency f1: end frequency   f1: upper limit standard value for the end frequency f1: upper limit standard value   - Clear LCLU t, 1 ******************************* *******                                                                                                                                                                                                                                                            |                                          | m:segment number               |                                         |                                         |
| f0: start frequency<br>r0: upper limit standard value<br>for the start frequency<br>f1: end frequency<br>r1: upper limit standard value<br>for the end frequency+ ************************************                                                                                                                                                                                                                                                                                                                                    |                                          | m=1 to 10                      |                                         |                                         |
| r0: upper limit standard value<br>for the start frequency<br>f1: end frequency<br>r1: upper limit standard value<br>for the end frequency + ************************************                                                                                                                                                                                                                                                                                                                                                          |                                          | f0: start frequency            |                                         |                                         |
| for the start frequency f1: end frequency   f1: end frequency r1: upper limit standard value   for the end frequency for the end frequency   - Clear LCLU t, 1   t:trace assignment ************************************                                                                                                                                                                                                                                                                                                                  |                                          | r0: upper limit standard value |                                         |                                         |
| f1: end frequency   r1: upper limit standard value   for the end frequency   - Clear   LCLU t, 1   t:trace assignment                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | for the start frequency        |                                         |                                         |
| - Clear LCLU t, 1<br>t:trace assignment ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | f1: end frequency              |                                         |                                         |
| - Clear LCLU t, 1<br>t:trace assignment ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | r1: upper limit standard value |                                         |                                         |
| - Clear LCLU t, 1<br>t:trace assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | for the end frequency          |                                         |                                         |
| - Clear LCLU t, 1<br>t:trace assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                |                                         |                                         |
| t:trace assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Clear                                  | LCLU t, 1                      | *************************************** | *************************************** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | t:trace assignment             |                                         |                                         |
| Segment line - lower limit value setting LMTL t, m, f0, r0, f1, r1 LMTL? n, m Same response setting as                                                                                                                                                                                                                                                                                                                                                                                                                                    | Segment line - lower limit value setting | LMTL t, m, f0, r0, f1, r1      | LMTL? n, m                              | Same response setting as                |
| Same parameter settings n=0, 1, 2 the segment line upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | Same parameter settings        | n=0, 1, 2                               | the segment line upper                  |
| as the segment line upper limit value setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | as the segment line upper      |                                         | limit value setting                     |
| limit value settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | limit value settings           |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                |                                         |                                         |
| - Clear $ $ LCLL t, I $ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Clear                                  | LCLL t, I                      | *****                                   | *****                                   |
| t:trace assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | t:trace assignment             |                                         |                                         |
| Limit test result read ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit test result read                   | *****                          | LMTS? t                                 |                                         |
| t: trace assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                | t: trace assignment                     |                                         |
| 0: TRACE-A/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                | 0: TRACE-A/B                            |                                         |
| 1: TRACE-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                | 1: TRACE-A                              |                                         |
| 2: TRACE-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                | 2: TRACE-B                              |                                         |
| LMTS? 0 LMTS 1, n; LMTS 2, n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                | LMTS? 0                                 | LMTS 1, n; LMTS 2, n                    |
| LMTS? 1 LMTS 1, n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                | LMTS? 1                                 | LMTS 1, n                               |
| LMTS? 2 LMTS 2, n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                | LMTS? 2                                 | LMTS 2, n                               |
| n=0:FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                |                                         | n=0:FAIL                                |
| n=1:PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                |                                         | n=1:PASS                                |
| n= 2 : No testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                |                                         | n= 2 : No testing                       |
| Beep ON/OFF BPON n BPON? BPON n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Been ON/OFF                              | BPON n                         | BPON?                                   | BPON n                                  |
| 0: OFF/10N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 0: OFF/1ON                     |                                         |                                         |

| Function summary                   | Control command               | Query       | Response           |
|------------------------------------|-------------------------------|-------------|--------------------|
| Hardcopy/copy control              |                               |             |                    |
| -COPY/COPY CONT                    |                               |             |                    |
| Printer GPIB address setting       | PRIA n                        | PRIA?       | PRIA n             |
|                                    | n=0 to 30                     |             |                    |
| Printer type                       | PRTM n                        | PRTM?       | PRTM n             |
|                                    | n 0:ESC/P                     |             |                    |
|                                    | 1:HP                          |             |                    |
|                                    | 2: VIDEO OUT                  |             |                    |
|                                    | 3: FD (BMP)                   |             |                    |
| Form feed ON/OFF                   | PFF n                         | PFF?        | PFF n              |
|                                    | n 0: OFF/1:ON                 |             |                    |
| Talker terminator switching        | TRM n                         | TRM?        | TRM n              |
|                                    | n 0:CR/LF+EOI                 |             |                    |
|                                    | 1:LF+EOI                      |             |                    |
| Time out opting                    | CTM a                         | CTM9        | CTM a              |
| (controller in use)                | r=0 to 90000 (sec)            | GTWI?       | GIWII              |
|                                    | Infinite wait if 0 sec is set |             |                    |
|                                    | infinite wait if 0 see is set |             |                    |
| Hardcopy output port selection     | PORT n                        | PORT?       | PORT n             |
| (active port selection)            | n 1:GPIB                      |             |                    |
|                                    | 2: RS232C (Opt)               |             |                    |
|                                    | 3: Centro (Opt)               |             |                    |
| Hardcopy start/stop and copy       | COPY n                        | COPY?       | n                  |
| condition read                     | n 0: stop/1: start            |             | 0:copy end (READY) |
|                                    |                               |             | 1:copying          |
|                                    | L DT                          |             |                    |
| Video plotter dedicated copy start | VPT                           | ******      | ******             |
| Hard copy in the BMP format        |                               |             |                    |
| Color selection                    | BMP COLOR, n                  | BMP? COLOR  | BMP COLOR, n       |
|                                    | 0: Monochrome                 |             |                    |
|                                    | 1: Color                      |             |                    |
| Color data compression             | BMP COMP. n                   | BMP? COMP   | BMP COMP. n        |
|                                    | 0: OFF                        |             |                    |
|                                    | 1: ON                         |             |                    |
|                                    |                               |             |                    |
| Copy No.                           | BMP COPYNO, n                 | BMP? COPYNO | BMP COPYNO, n      |
|                                    | n=0000 to 9999                |             |                    |

#### ■ SAVE/RECALL

| Function summary                    | Control command         | Query                                   | Response    |
|-------------------------------------|-------------------------|-----------------------------------------|-------------|
| ■ SAVE/RECALL                       |                         |                                         |             |
| Save item selection                 |                         |                                         |             |
| Measuring parameter                 | SV1 n                   | SV1?                                    | SV1 n       |
| S (normalize) data                  | SV2 n                   | SV2?                                    | SV2 n       |
| Trace data                          | SV3 n                   | SV3?                                    | SV3 n       |
| Frequency table                     | SV4 n                   | SV4?                                    | SV4 n       |
| Level table                         | SV5 n                   | SV5?                                    | SV5 n       |
| Calibration data                    | SV6 n                   | SV6?                                    | SV6 n       |
|                                     | 0: OFF                  |                                         |             |
|                                     | 1: CH 1 and 2 selection |                                         |             |
|                                     | 2: CH 1 selection       |                                         |             |
|                                     | 3: CH 2 selection       |                                         |             |
|                                     |                         |                                         |             |
| RBW table                           | SVRBW m, n              | SVRBW? m1                               | SVRBW m1, n |
| User wait table                     | SVWAI m, n              | SVWAI? m1                               | SVWAI m1, n |
|                                     | m: channel selection    | m1:channel designation                  |             |
|                                     | 0: CH 1 and 2 selection | 1:CH1                                   |             |
|                                     | 1: CH 1 selection       | 2:CH2                                   |             |
|                                     | 2: CH 2 selection       |                                         |             |
|                                     | n: selection ON/OFF     |                                         |             |
|                                     | 0: OFF/1:ON             |                                         |             |
|                                     |                         |                                         |             |
| Drive selection                     | PMCS n                  | PMCS?                                   | PMCS n      |
|                                     | 0: INT MEM              |                                         |             |
|                                     | 1:FD                    |                                         |             |
|                                     | 2: PMC                  |                                         |             |
|                                     |                         |                                         |             |
| Media format and directory creation | MA4                     | *************************************** | ******      |
| Directory creation                  | MKDR                    | *****                                   | *****       |

| Function summary                  | Control command | Query | Response        |
|-----------------------------------|-----------------|-------|-----------------|
| Save execution                    | SVM r           | ***** | *****           |
|                                   | r=0 to 99       |       |                 |
|                                   |                 |       |                 |
| Recall execution                  | RCM r           | ***** | *****           |
|                                   |                 |       |                 |
| Delete execution                  | DLM r           | ***** | *****           |
|                                   |                 |       |                 |
| Index recall display              | INDX n          | INDX? | INDX n          |
|                                   | 0: CLOSE/1:OPEN |       |                 |
| Constitution list diseals of last |                 | ***   | ***             |
| Save items list display/clear     | RC2: display    | ****  | ****            |
|                                   | RC3: clear      | ****  | ****            |
| Media error information read      | *****           | PER?  | 00·(NORMAL)     |
| Wiedla error miormation read      |                 |       | 01:NO FD PMC    |
|                                   |                 |       | 02:NO FORMAT    |
|                                   |                 |       | 04.PROTECTED    |
|                                   |                 |       | 05:MEDIA ERROR  |
|                                   |                 |       | 06:MEM. OVER    |
|                                   |                 |       | 07:NOT FOUND    |
|                                   |                 |       | 12:DIFFERENT    |
|                                   |                 |       | VERSION         |
|                                   |                 |       | 13:SELECT FDD   |
|                                   |                 |       | 14:NO DATA      |
|                                   |                 |       | 11:OTHER ERRORS |
|                                   |                 |       |                 |
| Save data in the text format      | SVTXT r         | ***** | *****           |
|                                   | r=0 to 99       |       |                 |

#### ■ Title -SAVE/RECALL

| Function summary                    | Control command                                                                                            | Query   | Response        |
|-------------------------------------|------------------------------------------------------------------------------------------------------------|---------|-----------------|
| ■ Title -SAVE/RECALL                |                                                                                                            |         |                 |
| Display ON/OFF                      | TTL n                                                                                                      | TTL?    | TTL n           |
|                                     | 0: OFF/1:ON                                                                                                |         |                 |
|                                     |                                                                                                            |         |                 |
| Title character input/read          | TEN text                                                                                                   | TEN?    | TEN text        |
|                                     |                                                                                                            |         |                 |
| Clock -SYSTEM                       |                                                                                                            |         |                 |
| Year, month, and day setting/read   | DATE yy, mm, dd                                                                                            | DATE?   | DATE yy, mm, dd |
|                                     | yy: year (00 to 99)                                                                                        |         |                 |
|                                     | $\begin{array}{c} \text{mm: month} (1 \text{ to } 12) \\ \text{dd. minute} (1 \text{ to } 21) \end{array}$ |         |                 |
|                                     | dd: minute (1 to 51)                                                                                       |         |                 |
| Hour minute and second setting/read | TIMF hh mm ss                                                                                              | TIME?   | TIME hh mm ss   |
|                                     | hh. hour (00 to 23)                                                                                        |         |                 |
|                                     | mm: minute $(0 \text{ to } 59)$                                                                            |         |                 |
|                                     | ss: second (0 to 59)                                                                                       |         |                 |
|                                     |                                                                                                            |         |                 |
| ■ Display color setting -SYSTEM     |                                                                                                            |         |                 |
| Color setting for each screen       | CPLL m, n                                                                                                  | CPLL? m | CPLL m, n       |
|                                     | m: Screen number (1 to 17)                                                                                 |         |                 |
|                                     | Note1                                                                                                      |         |                 |
|                                     | n: Color number (0 to 15)                                                                                  |         |                 |
|                                     | 0: pitch black                                                                                             |         |                 |
|                                     | 1: dark blue                                                                                               |         |                 |
|                                     | 2: dark red                                                                                                |         |                 |
|                                     | 3: dark purple                                                                                             |         |                 |
|                                     | 4: dark green                                                                                              |         |                 |
|                                     | 5: dark sky blue                                                                                           |         |                 |
|                                     | 6: dark yellow                                                                                             |         |                 |
|                                     | 7: light gray                                                                                              |         |                 |
|                                     | 8: dark gray                                                                                               |         |                 |
|                                     | 9: light blue                                                                                              |         |                 |
|                                     | 10: light red                                                                                              |         |                 |
|                                     | 11: light purple                                                                                           |         |                 |
|                                     | 12: light green                                                                                            |         |                 |
|                                     | 13: light sky blue                                                                                         |         |                 |
|                                     | 14: light yellow                                                                                           |         |                 |
|                                     | 15: pure white                                                                                             |         |                 |

#### MS4630B List of device messages (Continued)

#### Note 1:

For the screen numbers, see the subsection "CFL subroutine" in Section 5.2 "System Subroutine" in the Remote Control (PTA Control) manual.

| Function summary                          | Control command                   | Query                | Response |
|-------------------------------------------|-----------------------------------|----------------------|----------|
| ■ Back light -BACK LIGHT                  |                                   |                      |          |
| Back light ON/OFF                         | BLIGHT n                          | BLIGHT?              | BLIGHT n |
|                                           | 0: OFF/1:ON                       |                      |          |
|                                           |                                   |                      |          |
| PTA                                       |                                   |                      |          |
| PTA ON/OFF                                | PTA n                             | *****                | ******   |
|                                           | 0: OFF/1:ON                       |                      |          |
| PTL mode                                  | PTL n                             | *****                | *****    |
| (PTA program transfer mode)               | 0: OFF(NORMAL)                    |                      |          |
| ( r 6 h h h h h h h h h h h h h h h h h h | 1: ON (PC $\rightarrow$ measuring |                      |          |
|                                           | instrument)                       |                      |          |
|                                           | 2: ON (measuring                  |                      |          |
|                                           | instrument $\rightarrow$ PC)      |                      |          |
|                                           |                                   |                      |          |
| PTA dual-port memory write/read           | PMYm, d                           | PMY? m1, n           | d1       |
|                                           | m: write block number             | m1: read start block | d2       |
|                                           | (0 to 31)                         | number (0 to 31)     | •        |
|                                           | d: write data (any numerics       | n: number of read    | •        |
|                                           | and characters)                   | blocks (1 to 32)     | dn       |
|                                           | or                                |                      |          |
|                                           | DMV m1                            |                      |          |
|                                           | d1                                |                      |          |
|                                           | d2                                |                      |          |
|                                           | •                                 |                      |          |
|                                           | •                                 |                      |          |
|                                           | m1: write start block             |                      |          |
|                                           | number (0 to 31)                  |                      |          |
|                                           | dX: write data (any numerics      |                      |          |
|                                           | and characters)                   |                      |          |

#### ■ Trace data/normalize data read format

| Function summary                       | Control command            | Query  | Response |
|----------------------------------------|----------------------------|--------|----------|
| ■ Trace data/normalize                 |                            |        |          |
| data read format                       |                            |        |          |
|                                        |                            |        |          |
| Read format assignment 1               | BIN n                      | BIN?   | BIN n    |
| (ASCII format/BINARY format)           | 0: ASCII format            |        |          |
|                                        | 1: BINARY format           |        |          |
|                                        |                            |        |          |
| Read format assignment 2               | FRMT n                     | FRMT?  | FRMT n   |
| (Floating-point type/fixed-point type) | 0: floating-point type     |        |          |
|                                        | 1: fixed-point type        |        |          |
|                                        | Valid if the used format 1 |        |          |
|                                        |                            |        |          |
|                                        | is ASCII Ionnat            |        |          |
| ■ Access channel selection             |                            |        |          |
| Read/write of active channel side      | SRW ACT                    | SRW?   | SRW ACT  |
| Read/write of CH 1 side                | SRW CH1                    | SRW?   | SRW CH1  |
| Read/write of CH 2 side                | SRW CH2                    | SRW?   | SRW CH2  |
|                                        |                            |        |          |
| ■ Data table protect                   | TBGRD n                    | TBGRD? | TBGRD n  |
| Note 1                                 | 0: OFF / 1:ON              |        |          |

#### MS4630B List of device messages (Continued)

#### Note 1:

Device message used to protect the frequency, level, RBW, and user wait tables from being updated due to parameter settings.

| Function summary            | Control command           | Query                       | Response                  |
|-----------------------------|---------------------------|-----------------------------|---------------------------|
| ■ Trace data read and write |                           |                             |                           |
|                             |                           |                             |                           |
| TRACE-A                     | XMA m, n, d1, d2••, dn    | XMA? m, n                   | d1                        |
|                             | or                        |                             | d2                        |
|                             | XMA m, n                  | m:read start point          | •                         |
|                             | (XMAD) d1                 | n:number of read data       | •                         |
|                             | (XMAD) d2                 |                             | dn                        |
|                             | •                         |                             |                           |
|                             | •                         |                             |                           |
|                             | (XMAD) dn                 |                             |                           |
|                             |                           |                             |                           |
|                             | m: write start point      |                             |                           |
|                             | (0 to 1000)               |                             |                           |
|                             | n: number of write points |                             |                           |
|                             | (1 to 1001)               |                             |                           |
|                             | dX: trace data            |                             |                           |
|                             | (-838.8608 to +838.8607)  |                             |                           |
|                             |                           |                             |                           |
|                             | (XMAD) can be omitted     |                             |                           |
| TRACE-B                     | XMB m n d1 d2•• dn        | XMB <sup>9</sup> m n        | Response data is the same |
|                             | or                        |                             | as for TRACE-A            |
|                             | XMB m. n                  | m and n are the same as for |                           |
|                             | (XMBD) d1                 | TRACE-A                     |                           |
|                             | (XMBD) d2                 |                             |                           |
|                             | •                         |                             |                           |
|                             | •                         |                             |                           |
|                             | (XMBD) dn                 |                             |                           |
|                             |                           |                             |                           |
|                             | m, n, and dX are the same |                             |                           |
|                             | as for TRACE-A            |                             |                           |
|                             |                           |                             |                           |
|                             | (XMBD) can be omitted     |                             |                           |

| Function summary                        | Control command           | Query                   | Response                    |
|-----------------------------------------|---------------------------|-------------------------|-----------------------------|
| ■ Normalize data (S memory)             |                           |                         |                             |
| read and write                          |                           |                         |                             |
|                                         |                           |                         |                             |
| S memory on TRACE-A side                | SMA m, n, d1, d2, ••, dn  | SMA? m, n               | Response data is the same   |
|                                         | or                        |                         | as for TRACE-A              |
|                                         | SMA m, n                  | m and n are the same as |                             |
|                                         | (SMAD) d1                 | for TRACE-A             |                             |
|                                         | (SMAD) d2                 |                         |                             |
|                                         | •                         |                         |                             |
|                                         | •                         |                         |                             |
|                                         | (SMAD) dn                 |                         |                             |
|                                         |                           |                         |                             |
|                                         | m, n, and dX are the same |                         |                             |
|                                         | as for TRACE-A            |                         |                             |
|                                         | (SMAD) can be omitted     |                         |                             |
|                                         |                           |                         |                             |
| S memory on TRACE-B side                | SMB m, n, d1, d2, ••, dn  | SMB? m, n               | Response data is the same   |
|                                         | or                        |                         | as for TRACE-A              |
|                                         | SMB m, n                  |                         |                             |
|                                         | (SMBD) d1                 |                         |                             |
|                                         | (SMBD) d2                 |                         |                             |
|                                         | •                         |                         |                             |
|                                         | •                         |                         |                             |
|                                         | (SMBD) dn                 |                         |                             |
|                                         |                           |                         |                             |
|                                         | m, n, and dX are the same |                         |                             |
|                                         | as for TRACE-A            |                         |                             |
|                                         | (SMBD) can be omitted     |                         |                             |
|                                         |                           |                         |                             |
| ■ Reading of the complex                |                           |                         |                             |
| measurement data                        |                           |                         |                             |
| Reading of the real number section      | *****                     | CDR? m, n               | Response data is the same   |
| Reading of the imaginary number section | *****                     | CDI? m, n               | as for TRACE-A.             |
|                                         |                           |                         | However, only floating-     |
|                                         |                           | m and n are the same as | point type is used for the  |
|                                         |                           | for TRACE-A             | ASCII format. Only real     |
|                                         |                           |                         | number type is used for the |
|                                         |                           |                         | BINARY format               |

| Function summary                      | Control command           | Query                   | Response                     |
|---------------------------------------|---------------------------|-------------------------|------------------------------|
| ■ Frequency table data read and write |                           |                         |                              |
|                                       |                           |                         |                              |
| Assigned channel side Note 1          | FQM m, n, d1, d2, ••, dn  | FQM? m, n               | f1                           |
|                                       | or                        |                         | f2                           |
|                                       | (FQMD) f1                 | m and n are the same as | •                            |
| Note 1:                               | (FQMD) f2                 | for TRACE-A             | •                            |
| Writing or reading of the access      | •                         |                         | fn                           |
| channel side assigned with "SRW"      | (FQMD) fn                 |                         | Only the ASCII format        |
| command                               |                           |                         | and fixed-point type         |
|                                       | m and n are the same as   |                         |                              |
|                                       | for TRACE-A               |                         |                              |
|                                       |                           |                         |                              |
|                                       | fX: frequency data        |                         |                              |
|                                       | 0 to 300 000 000(Hz)      |                         |                              |
|                                       | (FQMD) can be omitted     |                         |                              |
|                                       |                           |                         |                              |
|                                       | FOMA                      |                         | C1                           |
| CH I side                             | FQMA m, n, d1, d2, ••, dn | FQMA? m, n              |                              |
|                                       | or<br>FOMA as a           |                         | 12                           |
|                                       | FQMA m, n                 | for TDACE A             | •                            |
|                                       | (FQMAD) II<br>(FOMAD) f2  | IOF IKACE-A             | fn                           |
|                                       | (FQMAD)12                 |                         | III<br>Only the ASCII format |
|                                       | (FOMAD) fr                |                         | only the ASCH format         |
|                                       |                           |                         | and fixed-point type         |
|                                       | (FOMAD) can be omitted    |                         |                              |
|                                       |                           |                         |                              |
| CH 2 side                             | FQMB m, n, d1, d2, ••, dn | FQMB? m, n              | f1                           |
|                                       | or                        |                         | f2                           |
|                                       | FQMB m, n                 |                         | •                            |
|                                       | (FQMBD) f1                |                         | •                            |
|                                       | (FQMBD) f2                |                         | fn                           |
|                                       | •                         |                         | Only the ASCII format        |
|                                       | (FQMBD ) fn               |                         | and fixed-point type         |
|                                       | (FQMBD ) can be omitted   |                         |                              |

| Function summary                 | Control command           | Query                   | Response              |
|----------------------------------|---------------------------|-------------------------|-----------------------|
| Level table data (used for power |                           |                         |                       |
| sweep) read and write            |                           |                         |                       |
|                                  |                           |                         |                       |
| Assigned channel side Note 1     | LVM m, n, d1, d2, ••, dn  | LVM? m, n               | d1                    |
|                                  | or                        |                         | d2                    |
|                                  | LVM m, n                  | m and n are the same as | •                     |
| Note 1:                          | (LVMD) d1                 | for TRACE-A             | •                     |
| Writing or reading of the access | (LVMD) d2                 |                         | dn                    |
| channel side assigned with "SRW" | •                         |                         | Only the ASCII format |
| command                          | (LVMD) dn                 |                         | and fixed-point type  |
|                                  |                           |                         |                       |
|                                  | m and n are the same as   |                         |                       |
|                                  | for TRACE-A               |                         |                       |
|                                  |                           |                         |                       |
|                                  | dX: Level data            |                         |                       |
|                                  | Same setting rage as the  |                         |                       |
|                                  | output power              |                         |                       |
|                                  | (LVMD) can be omitted     |                         |                       |
|                                  |                           |                         |                       |
| CH 1 side                        | LVMA m, n, d1, d2, ••, dn | LVMA? m, n              | d1                    |
|                                  | or                        |                         | d2                    |
|                                  | LVMA m, n                 | m and n are the same as | •                     |
|                                  | (LVMAD) d1                | for TRACE-A             | •                     |
|                                  | (LVMAD) d2                |                         | dn                    |
|                                  | •                         |                         | Only the ASCII format |
|                                  | (LVMAD) dn                |                         | and fixed-point type  |
|                                  | (LVMAD) can be omitted    |                         |                       |
|                                  |                           |                         |                       |
| CH 2 side                        | LVMB m, n, d1, d2, ••, dn | LVMB? m, n              | d1                    |
|                                  | or                        |                         | d2                    |
|                                  | LVMB m, n                 | m and n are the same as | •                     |
|                                  | (LVMBD) d1                | for TRACE-A             | •                     |
|                                  | (LVMBD) d2                |                         | dn                    |
|                                  | •                         |                         | Only the ASCII format |
|                                  | (LVMBD) dn                |                         | and fixed-point type  |
|                                  | (LVMBD) can be omitted    |                         |                       |

| Function summary                      | Control command           | Query                   | Response |
|---------------------------------------|---------------------------|-------------------------|----------|
| ■ RBW table data read and write       |                           |                         |          |
| Assigned channel side Note 1          | RBTB m, n, d1, d2, ••, dn | RBTB? m, n              | d1       |
|                                       | or                        |                         | d2       |
|                                       | RBTB m, n                 | m and n are the same as | •        |
|                                       | (RBTBD) d1                | for TRACE-A             | •        |
|                                       | (RBTBD) d2                |                         | dn       |
|                                       | •                         |                         |          |
|                                       | (RBTBD) dn                |                         |          |
|                                       |                           |                         |          |
|                                       | m and n are the same as   |                         |          |
|                                       | for TRACE-A               |                         |          |
|                                       |                           |                         |          |
|                                       | dX:RBW code               |                         |          |
|                                       | Same as setting code for  |                         |          |
|                                       | RBW parameter             |                         |          |
|                                       | (RBTBD) can be omitted    |                         |          |
|                                       |                           |                         |          |
|                                       |                           |                         |          |
| ■ User wait table data read and write |                           |                         |          |
| Assigned channel side Note 1          | UWTB m, n, d1, d2, ••, dn | UWTB? m, n              | d1       |
|                                       | or                        |                         | d2       |
|                                       | UWTB m, n                 | m and n are the same as | •        |
|                                       | (UWTBD) d1                | for TRACE-A             | •        |
|                                       | (UWTBD) d2                |                         | dn       |
|                                       | •                         |                         |          |
| Note 1:                               | (UWTBD) dn                |                         |          |
| Writing or reading of the access      |                           |                         |          |
| channel side assigned with "SRW"      | m and n are the same as   |                         |          |
| command                               | for TRACE-A               |                         |          |
|                                       |                           |                         |          |
|                                       | dX:Wait time              |                         |          |
|                                       | 0.01 to 7200000 (msec)    |                         |          |
|                                       | (UWTBD) can be omitted    |                         |          |

#### ■ Common commands

| Function summary         | Control command | Query  | Response                  |
|--------------------------|-----------------|--------|---------------------------|
| Common commands          |                 |        |                           |
| Rset Command             | *RST            | *****  | *****                     |
| Identification Query     | *****           | *IDN?  | ANRITSU, MS4630B,         |
|                          |                 |        | 0,0000                    |
| SelfTest Query           | *****           | *TST?  | n:-32768 to 32767         |
|                          |                 |        | Definition of each bit in |
|                          |                 |        | binary notation is given  |
|                          |                 |        | below.                    |
|                          |                 |        |                           |
|                          |                 |        | 0: MAIN CPU               |
|                          |                 |        | 1: DISP CPU               |
|                          |                 |        | 2: DSP                    |
|                          |                 |        | 3: (RESERVED)             |
|                          |                 |        | 4: LOCAL 10M PLL          |
|                          |                 |        | 5: 1st LOCAL              |
|                          |                 |        | 6: (RESERVED)             |
|                          |                 |        | 7: (RESERVED)             |
|                          |                 |        | 8: OUT 100M PLL           |
|                          |                 |        | 9: OUT 50M PLL            |
|                          |                 |        | 10: OUT ALC               |
|                          |                 |        | 11: (RESERVED)            |
|                          |                 |        | 12: REC. (Rch)            |
|                          |                 |        | 13: REC. (TAch)           |
|                          |                 |        | 14: REC. (TBch)           |
|                          |                 |        | 15: (RESERVED)            |
|                          |                 |        |                           |
|                          |                 |        | Each bit is 0: OK/1: NG   |
| Operation Complete       | *OPC            | *OPC?  | n (=1)                    |
| Wait to Continue Command | *WAI            | ****** | *****                     |
| Clear Status Command     | *CLS            | ****** | *****                     |
| Read Status Byte Query   | *****           | *STB?  | n:0 to 255                |
|                          |                 |        | Bit0:unused               |
|                          |                 |        | 1: PTA                    |
|                          |                 |        | 2: END                    |
|                          |                 |        | 3: ERROR                  |
|                          |                 |        | 4: MAV                    |
|                          |                 |        | 5:ESB                     |
|                          |                 |        | 6: RQS&MSS                |
|                          |                 |        | 7: unused                 |

| Function summary              | Control command        | Query | Response    |
|-------------------------------|------------------------|-------|-------------|
| Common commands               |                        |       |             |
| Service Request Enable        | *SRE n                 | *SRE? | n:0 to 255  |
|                               | n: 0 to 255            |       |             |
|                               |                        |       |             |
| Standard Event Status Regster | *****                  | *ESR? | n: 0 to 255 |
|                               |                        |       |             |
|                               |                        |       | Bit 0:OPC   |
|                               |                        |       | 1: unused   |
|                               |                        |       | 2: QYE      |
|                               |                        |       | 3: unused   |
|                               |                        |       | 4: EXE      |
|                               |                        |       | 5: CME      |
|                               |                        |       | 6: unused   |
|                               |                        |       | 7: PON      |
|                               | *FOF                   | *EQE9 |             |
| Standard Event Status Enable  | *ESE n                 | *ESE? | n:0 to 255  |
|                               | n: 0 to 255            |       |             |
| Power On Status Clear         | *DSC                   | *DSC? | n(-0)       |
| r ower On Status Clear        |                        |       | II (=0)     |
| Trigger Command               | *TRG                   | ***** | *****       |
|                               | Single sweep execution |       |             |
|                               | Single sweep execution |       |             |
| Recall Command                | *RCL n                 | ****  | ****        |
|                               | n=0 to 99              |       |             |
|                               |                        |       |             |
|                               | Same as SVM n          |       |             |
|                               |                        |       |             |
| Save Command                  | *SAV n                 | ***** | *****       |
|                               | n=0 to 99              |       |             |
|                               |                        |       |             |
|                               | Same as RCM n          |       |             |

#### Common commands

| Function summary              | Control command | Query | Response                  |
|-------------------------------|-----------------|-------|---------------------------|
| Common commands               |                 |       |                           |
| Option Identification Command | *****           | *OPT? | n:-32768 to 32767         |
|                               |                 |       | Definition of each bit in |
|                               |                 |       | binary notation is given  |
|                               |                 |       | below.                    |
|                               |                 |       |                           |
|                               |                 |       | 0:REC.(TBch)              |
|                               |                 |       | 1:ATT(ELEC.)              |
|                               |                 |       | 2:ATT(MECH.)              |
|                               |                 |       | 3:3WAY DIVIDER            |
|                               |                 |       | 4:REF.OSC                 |
|                               |                 |       | 5:PMC DRIVE               |
|                               |                 |       | 6:RS232C/Centro.          |
|                               |                 |       | 7:75Ohm Adapter           |
|                               |                 |       | 8 to 15:(RESERVED)        |
|                               |                 |       |                           |
|                               |                 |       | Common to all bits        |
|                               |                 |       | 0:none/1: present         |

# MS4630B List of device messages (Continued)

r

| Function summary                                 | Control command       | Query | Response            |
|--------------------------------------------------|-----------------------|-------|---------------------|
| GPIB dedicated command                           |                       |       |                     |
| Event Status register 1                          | *****                 | ESR1? | n:0 to 255          |
| (PTA Status register)                            |                       |       | Bit0 to 3:CALL RSV  |
|                                                  |                       |       | Bit4 to 7:PTA ERR.  |
| Enable register 1                                | ESE1 n<br>n: 0 to 255 | ESE1? | n                   |
| Event Status register 2<br>(End Status register) | *****                 | ESR2? | n:0 to 255          |
| (                                                |                       |       | Bit0: CH 1 sweep    |
|                                                  |                       |       | 1:CH 2 sweep        |
|                                                  |                       |       | 2: FD drive         |
|                                                  |                       |       | 3: utility function |
|                                                  |                       |       | 4 to 7: (RESERVED)  |
| Enable register 2                                | ESE2 n<br>n: 0 to 255 | ESE2? | n                   |
| Event Status register 3                          | *****                 | ESR3? | n:0 to 255          |
| (System Error Status register)                   |                       |       |                     |
|                                                  |                       |       | Bit0: FAN stops     |
|                                                  |                       |       | 4 to 7: (RESERVED)  |
| Enable register 3                                | ESE3 n                | ESE3? | n:0 to 255          |
|                                                  | n:0 to 255            |       |                     |

#### ■ Drawing-related command

| Function summary                 | Control command               | Query   | Response  |
|----------------------------------|-------------------------------|---------|-----------|
| Drawing-related command          |                               |         |           |
| PTA drawing origin moving Note 1 | GORG x, y                     | GORG?   | GORG x, y |
|                                  | x: -639 to 639; origin        |         |           |
|                                  | X-coordinate                  |         |           |
|                                  | y: -479 to 479; origin        |         |           |
|                                  | Y-coordinate                  |         |           |
|                                  | Note 1                        |         |           |
| Screen deletion                  | CFL n                         | *****   | *****     |
|                                  | n:screen number               |         |           |
|                                  | Note 2                        |         |           |
|                                  |                               |         |           |
| Character drawing                | DCH x, y, text, m (,n)        | *****   | *****     |
|                                  | x, y:drawing coordinates      |         |           |
|                                  | m: screen number              |         |           |
|                                  | n: normal (0)/reverse (1)     |         |           |
|                                  | Note 2                        |         |           |
|                                  |                               |         |           |
| Line drawing                     | DLN x0, y0, x1, y1, m (,n)    | ******* | ******    |
|                                  | x0, y0:starting point         |         |           |
|                                  | coordinates                   |         |           |
|                                  | x1, y1:ending point           |         |           |
|                                  | coordinates                   |         |           |
|                                  | m: screen number              |         |           |
|                                  | n: line type                  |         |           |
|                                  | Note 2                        |         |           |
| Quadrilateral drawing            | DPC = 0 = 0 = 1 = 1 = m(n)    | ****    | ****      |
|                                  | DRC x0, y0, x1, y1, III (,II) |         |           |
|                                  | opposite angle 0              |         |           |
|                                  | v1 v1: Coordinates of         |         |           |
|                                  | onnosite angle 1              |         |           |
|                                  | m: screen number              |         |           |
|                                  | n: line type                  |         |           |
|                                  | Note 2                        |         |           |
| 1                                | 1010 2                        |         |           |

#### MS4630B List of device messages (Continued)

#### Note 1:

The move of drawing coordinates is applicable only when the system subroutine function of PTA is used for drawing. It is not applicable to a device message due to this remote control.

#### Note 2:

For details of parameters of drawing commands, see the subsection "system subroutines" in Section 5 "Extended PTL" in the Remote Control (PTA Control) manual.

| Function summary                | Control command                      | Query | Response |
|---------------------------------|--------------------------------------|-------|----------|
| Drawing-related command         |                                      |       |          |
| Circle drawing                  | DCR x, y, r, m (,n)                  | ***** | *****    |
|                                 | x, y: circle center coordinates      |       |          |
|                                 | r: circle radius                     |       |          |
|                                 | m: screen number                     |       |          |
|                                 | n: line type                         |       |          |
|                                 | Note                                 |       |          |
|                                 |                                      |       |          |
| Arc drawing                     | DAR x, y, r, s1, s2, m (,n)          |       |          |
|                                 | x, y:circle center coordinates       |       |          |
|                                 | r: circle radius                     |       |          |
|                                 | s1: starting angle                   |       |          |
|                                 | s2: ending angle                     |       |          |
|                                 | m: screen number                     |       |          |
|                                 | n: line type                         |       |          |
|                                 | Note                                 |       |          |
|                                 |                                      |       |          |
| $\bigcirc$ and $\times$ drawing | DJG x, y, f, m1, m2                  |       |          |
|                                 | x, y:circle center coordinates       |       |          |
|                                 | r: circle radius                     |       |          |
|                                 | f: function                          |       |          |
|                                 | $\bigcirc$ display (0)/× display (1) |       |          |
|                                 | m1:                                  |       |          |
|                                 | m2: × drawing screen number          |       |          |
|                                 | Note                                 |       |          |

### MS4630B List of device messages (Continued)

#### Note:

For details of parameters of drawing commands, see the subsection "system subroutines" in Section 5 "Extended PTL" in the Remote Control (PTA Control) manual.

#### Drawing-related command

| Function summary          | Control command           | Query | Response |
|---------------------------|---------------------------|-------|----------|
| ■ Drawing-related command |                           |       |          |
| Color fill drawing        | PNT x, y, m, n            | ***** | *****    |
|                           | x, y:assigned coordinates |       |          |
|                           | m: screen number for      |       |          |
|                           | color fill (1 to 17)      |       |          |
|                           | n: screen number for area |       |          |
|                           | assignment (0 to 17)      |       |          |

#### MS4630B List of device messages (Continued)

#### Using the color fill drawing command:

If a point designated by (x, y) coordinates exists within a circle or quadrilateral (a closed area with matching starting and ending points of drawing) drawn in the screen designated by the number n, this command fills the inside of this area with the color designated by the screen number m.

For details of screen numbers, see the subsection "system subroutines" in Section 5 "Extended PTL" in the Remote Control (PTA Control) manual.



The inside of the quadrilateral is filled with the color designated

#### Note:

If a circle or quadrilateral (a closed area with matching starting and ending points of drawing) drawn in the screen designated by the number n shares intersection point(s) with a line or quadrilateral drawn in a screen other than that designated by the number n, the former is considered to have non-matching starting and ending points of drawing, and thus the areas other than the closed area will also be filled with color.

| MS4630B List of device messages (Continued) |  |
|---------------------------------------------|--|
|---------------------------------------------|--|

| Function summary                  | Control command | Query                   | Response               |
|-----------------------------------|-----------------|-------------------------|------------------------|
| Arithmetic function               |                 |                         |                        |
| Function of calculating the group | *****           | GPDLY? P0, P1, ch       | t:(Group delay result) |
| delay time from complex data      |                 | [,e]                    |                        |
|                                   |                 | P0, P1: measuring point |                        |
|                                   |                 | (0 to 1000)             |                        |
|                                   |                 | ch: measurement channel |                        |
|                                   |                 | (1: CH-1/2: CH-2)       |                        |
|                                   |                 | e: decimal place        |                        |
|                                   |                 | assignment (0 to -12)   |                        |
|                                   | 1               |                         |                        |

#### Note:

For information on using the group delay function, see Section 9, "Other Device Messages".

# Section 7

# **Reading Sweep Control/Measurement Data**

| 7.1 | Overvi | ew                                                  | 7-2  |
|-----|--------|-----------------------------------------------------|------|
| 7.2 | Sweep  | Start Commands and Sweep Condition                  |      |
|     | (Swee  | p End) Detection                                    | 7-2  |
|     | 7.2.1  | Sweep start                                         | 7-2  |
|     | 7.2.2  | Sweep condition (sweep end) detection               | 7-3  |
| 7.3 | Readir | ng Measurement Data                                 | 7-4  |
|     | 7.3.1  | Measurement memory/Waveform memory                  | 7-4  |
|     | 7.3.2  | Read data format                                    | 7-6  |
|     | 7.3.3  | Reading data in the ASCII (character string) format | 7-6  |
|     | 7.3.4  | Procedure for reading measurement data              |      |
|     |        | - ASCII (character string) format                   | 7-8  |
|     | 7.3.5  | Reading in the BINARY (binary) format               | 7-9  |
|     | 7.3.6  | Procedure for reading measurement data              |      |
|     |        | - BINARY format                                     | 7-11 |

#### Section 7 Reading Sweep Control/Measurement Data

# 7.1 Overview

If measurement data is read after a sweep is started from an external controller and the sweep end is detected, special commands and procedures are required which are not found in manual operations.

This chapter explains about the sweep start commands, sweep end detection, and procedure for reading measurement data.

# 7.2 Sweep Start Commands and Sweep Condition (Sweep End) Detection

# 7.2.1 Sweep start

Use one of the following remote commands to start a single sweep.

| Remote command | Function                                                                                        |
|----------------|-------------------------------------------------------------------------------------------------|
| "SWP 1"        | Only starts a normal single sweep (without sweep end synchronization).                          |
| "SWP 2"        | Starts and ends a normal single sweep (with sweep end synchronization).                         |
| "CAL"          | Only starts the $X \rightarrow S$ sweep (normalize sweep) (without sweep end synchronization).  |
| "CAL 2"        | Starts and ends the $X \rightarrow S$ sweep (normalize sweep) (with sweep end synchronization). |
| "COR n"        | Starts a calibration data uptake sweep.                                                         |
|                | n varies depending on the calibration data type.                                                |

Notes:

- If any of the above sweep start remote commands is executed while executing a sweep, the sweep is restarted.
- In the case of a sweep using an external trigger, the sweep is started only after any of the above sweep start remote commands is executed and then an external trigger event occurs.
- If the measurement channels are channels 1 & 2 and the coupled channel is OFF, each channel is swept alternately. The single sweep in this case is sweeping each of the channels once with the active channel as the preceding sweep channel.

#### 7.2 Sweep Start Commands and Sweep Condition (Sweep End) Detection

# 7.2.2 Sweep condition (sweep end) detection

Use one of the following remote commands to query the sweep condition.

| Remote command | Response data                  |
|----------------|--------------------------------|
| "SWP?"         | "n" 0: sweep end/(1: sweeping) |
| "CAL?"         | "n" 0: sweep end/(1: sweeping) |
| "COR?"         | "n" 0: sweep end/(1: sweeping) |

The response data (0: sweep end) is returned when the sweep ends or halts.

If the sweep condition is queried while a sweep is executed, no response is returned, and the controller is forced to wait. That is, no return of responses mean that a sweep is being executed.

Therefore, if the sweep condition is queried after sending a sweep start remote command, the time when its response data is received on the controller side can be recognized as the sweep end point.

If the "SWP 2" or "CAL 2" command is used to execute a sweep, the command covers the range between the start and end of the sweep. In this case, even if the above sweep condition is not queried, the time when the command execution ends can be recognized as the sweep end point.

That is, this command is useful in an application program that executes a next command as soon as the sweep ends.

#### Note:

While the controller waits for response data, or while a command with sweep end synchronization is executed, press the LOCAL key on the front panel of the measuring instrument to cancel the wait state or the command execution state.

Section 7 Reading Sweep Control/Measurement Data

# 7.3 Reading Measurement Data

# 7.3.1 Measurement memory/Waveform memory

The sweep allows you to output measurement data (waveform data) stored inside measuring instruments to an external controller. The following shows the configuration, application and attribute of the measurement memory and waveform memory to be read from in this case.



Measurement Memory/Waveform Memory Calibration Flow

#### Note:

The configuration shown in the figure above illustrates a single measurement channel. As the device has two measurement channels (ch1 and ch2), the measurement memory and waveform memory shown in the figure above exist for each measurement channel.

#### 7.3 Reading Measurement Data

| Memory name      | Application                                                                                |
|------------------|--------------------------------------------------------------------------------------------|
| Calibration data | Complex data memory used to store the calibration data obtained through vector calibration |
| memory           | (CAL).                                                                                     |
| Complex          | Complex data memory used to store the measurement data that has been vector-calibrated.    |
| measurement      | However, the X-S (normalization), smoothing process or subtrace process has not been       |
| memory           | performed on the measurement data.                                                         |
| XDA              | Measurement memory on the TRACE-A side used to store, in the internal format of the        |
|                  | measuring instrument, the measurement data that has been formatted.                        |
| XDB              | Measurement memory on the TRACE-B side used for the same purpose as the above.             |
| SDA              | Measurement memory on the TRACE-A side used to store, in the internal format of the        |
|                  | measuring instrument, the reference data (S data) to be subject to the X-S (normalization) |
|                  | function.                                                                                  |
| SDB              | Measurement memory on the TRACE-B side used for the same purpose as the above.             |
| XMA              | Waveform memory on the TRACE-A side used to store the XDA data converted to a format       |
|                  | for display and external input-output.                                                     |
| XMB              | Waveform memory on the TRACE-B side used for the same purpose as the above.                |
| SMA              | Waveform memory on the TRACE-A side used to store the SDA data converted to a format       |
|                  | for external input-output.                                                                 |
| SMB              | Waveform memory on the TRACE-B side used for the same purpose as the above.                |

#### Measurement Memory/Waveform Memory Application

#### Notes:

- The number of data arrays in each measurement memory and waveform data memory is 1001 points.
- When the measurement format is either POLAR, IMPD CHART or ADMT CHART, the value of the real section within the complex data is stored in measurement memory A (XDA, SDA, XMA, SMA) and the value of the imaginary section within the complex data is stored in measurement memory B (XDB,SDB, XMB, SMB).

When the measurement format is LOG Z, the following relationship is established between the data (XMA) and the measured value within the measurement memory (Z: impedance).

$$Z(\Omega) = 10^{(XMA/10)} / 1000$$

| Momory pama      | Writing/ | Reading of the ASCII format |                | Reading of the BINARY format |             | Saving to  |
|------------------|----------|-----------------------------|----------------|------------------------------|-------------|------------|
| Memory name      | Reading  | Fixed-point                 | Floating-point | Integer                      | Real number | a file     |
| Calibration data |          |                             |                |                              |             | $\bigcirc$ |
| memory           |          |                             |                |                              |             |            |
| Complex measure- | RD       |                             | 0              |                              | 0           |            |
| ment memory      |          |                             |                |                              |             |            |
| XDA, XDB         |          |                             |                |                              |             | $\bigcirc$ |
| SDA, SDB         |          |                             |                |                              |             |            |
| XMA, XMB         | WR/RD    | 0                           | 0              | 0                            |             |            |
| SMA, SMB         | WR/RD    | 0                           | 0              | 0                            |             |            |

#### Measurement Memory/Waveform Memory Attribute

#### Section 7 Reading Sweep Control/Measurement Data

# 7.3.2 Read data format

The types of data to be read from the measurement memory or the waveform memory are roughly classified into two types: the ASCII (character string) and BINARY formats. The ASCII (character string) format is further divided into the fixed-point and floating-point types while the BINARY format into the real number and integer types. Select one of these data formats depending on whether the measurement memory or waveform memory is used as follows:



# 7.3.3 Reading data in the ASCII (character string) format

In the ASCII (character string) format, one digit of measurement data (including the decimal point, sign, and exponential symbol) is output as one-byte ASCII character.

One of the two types can be selected for the ASCII (character string) format: the floating-point type in the format of mantissa + exponent with a varying decimal point depending on data or the fixed-point type with a fixed decimal point used to represent, e.g., a marker level.

Advantages and disadvantages of reading data in the ASCII (character string) format

#### Advantages:

• Since data is sent to and received from the controller in the same format as for normal remote commands, a program can be easily developed for the controller, and the data processing after reading is generally easy.

#### Disadvantages:

• In general, the size of data transferred from the measuring instrument is larger than that in the BINARY format, requiring more time for data transfer and reading by the controller.

#### 7.3 Reading Measurement Data

#### (1) ASCII (character string): Floating-point type output

• The measurement data taken at each point consists of a mantissa and an exponent when it is output. Additionally, the data is output as a real number allowing for a measurement unit according to the measurement format used when the data is taken.

#### Overall sign/Mantissa/E/Exponential sign/Exponential value

| Overall sign      | : + or - is attached. + is not omitted even if the value is positive.                    |
|-------------------|------------------------------------------------------------------------------------------|
| Mantissa          | : Real number consisting of a 1-digit integer part, decimal point, and 6 decimal places. |
| E                 | : The numeric value following this symbol is an exponential part.                        |
| Exponential sign  | : + or - is attached. + is not omitted even if the value is positive.                    |
| Exponential value | : 2-digit integer value.                                                                 |

#### Output example -1.234000E-01

If the measurement format is LOGMAG, the above output value represents a measured value of  $-1.234*10^{-1} \text{ dB} = -0.1234 \text{ dB}$ .

• The measurement memory and the waveform memory that can output data in the ASCII (character string) format: floating-point type are XMA, XMB, SMA, SMB, and complex measurement memory.

#### (2) ASCII (character string): Fixed-point type output

• All measurement data taken at each point is output in the same format as the display format of the numeric part of the marker level.

Additionally, the data is output as a real number allowing for a measurement unit according to the measurement format used when the data is taken.

#### Output example -12.3456

If the measurement format is LOGMAG, the above output value represents a measured value of -12.3456 dB.

• The measurement memory and the waveform memory that can output data in the ASCII (character string) format: fixed-point type are XMA, XMB, SMA, and SMB.

#### Section 7 Reading Sweep Control/Measurement Data

# 7.3.4 Procedure for reading measurement data - ASCII (character string) format

The following shows an example of reading measurement data (0 to 250 points) into the controller from the waveform memory on the TRACE-A side of the measurement channel 1 (XMA).

| "BIN 0"<br>↓ | : Specification of reading data in the ASCII (character string) format (0: ASCII/1: BINARY)                                 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|
| "FRMT 1"     | : Specification of "fixed-point type" in the ASCII (character string) format (0: floating-point/1: fixed-point)             |
| "SRW CH1"    | : Specification of reading data from Channel 1<br>(ACT: active channel side/CH1: channel 1 side/CH2: channel 2 side)        |
| "XMA? 0,251" | : Request for outputting 251 pieces of data from the TRACE-A waveform memory (XMA), i.e., data from the 0th to 250th point. |
| Reading      | and storing data at one point $\rightarrow \rightarrow X(n)$ Looping for 251 times                                          |
| Ļ            |                                                                                                                             |
| End          |                                                                                                                             |
|              | -Order of output data-                                                                                                      |
|              | Data at 0th point Delimiter                                                                                                 |

Data at 1st point

Data at 2nd point

Data at 250th point

#### Note:

After each piece of data is output, CR+LF (2 bytes) or LF (1 byte) is output as a delimiter. The delimiter may be changed using the "TRM n" command.

Delimiter

Delimiter

Delimiter

#### 7.3 Reading Measurement Data

# 7.3.5 Reading data in the BINARY (binary) format

In the BINARY (binary) format, measurement data is output as binary values with a fixed 4-byte length. Advantages and disadvantages of reading data in the BINARY format can be generally assumed as being opposite to those of reading data in the ASCII (character string) format.

As with the ASCII (character string) format, the BINARY format is divided into two types: real number type and integer type. The data is output in either the real number or the integer type depending on the measurement memory or the waveform memory that outputs the data.

(1) BINARY: real number output

#### Output format of BINARY: real number type data

| Measurement data | , 4-byte binary | (IEEE Standard: | single precision | real number) |
|------------------|-----------------|-----------------|------------------|--------------|
|------------------|-----------------|-----------------|------------------|--------------|

| 1st byte         | 2nd byte | 3rd byte      | 4th byte |
|------------------|----------|---------------|----------|
|                  |          |               | •        |
|                  |          |               |          |
|                  | *4       |               |          |
| Exponent, 8 bits | s Mant   | issa, 23 bits |          |
| Mantissa code    | 1 bit    |               |          |

- All measurement data taken at each point is output as four-byte (32-bit) data.
- If the 1st byte is on the MSB side and the 4th byte is on the LSB side, the measuring instrument outputs 1st, 2nd, 3rd, and 4th bytes in this order.
- Only the complex measuring memory can output data in the BINARY format: real number type. The unit of real number and imaginary number data to be output in this case is an absolute number.

#### Section 7 Reading Sweep Control/Measurement Data

(2) BINARY: integer type output

#### Output format of BINARY: integer type data

|     | Measurement data, 4-byte binary |          |          |          |     |
|-----|---------------------------------|----------|----------|----------|-----|
| MSB | -                               |          |          |          | LSB |
|     | 1st byte                        | 2nd byte | 3rd byte | 4th byte | 7   |

• All measurement data taken at each point is output as four-byte (32-bit) integer data.

The resolution of measurement data is determined by the measurement format used when the data is taken. That is, the place of the minimum resolution of measurement data at the time of measurement is the  $10^{\circ}$  place for this integer data.

For example, if LOGMAG is used as the measurement format, 0.0001 dB is output as 1.

- As a negative number, the entire number (4-byte) is represented as a complement of 2.
- If the 1st byte is on the MSB side and the 4th byte is on the LSB side, the measuring instrument outputs the 1st, 2nd, 3rd, and 4th bytes in this order.

In this case, the controller must store each byte data that it has read not as character variables but as unsigned byte data of numerical variables that permits mathematical operations.

• The following shows the operation in which the controller reverts each byte data that it has read to the original measurement data.

Numerical variables in the controller



The operation is performed in view of the overall sign.

If  $0 \le A \le 127$ , that is, the data as a whole is positive or 0, Measured data = RES

If  $128 \le A \le 255$ , that is, the data as a whole is negative, Measured data = RES-2<sup>32</sup>

• The measurement memory and the waveform memory that can output data in the BINARY format: integer type are XMA, XMB, SMA, and SMB.
#### 7.3 Reading Measurement Data

## 7.3.6 Procedure for reading measurement data - BINARY format

The following shows an example of reading measurement data (0 to 250 points) into the controller from the waveform memory on the TRACE-A side of the measurement channel 1 (XMA).

| "BIN 1"<br>⊥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : Specification of reading data in the BINARY (binary) formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | at (0: ASCII/1: BINARY) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| "SRW CH1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : Specification of reading data from Channel 1<br>(ACT: active channel/CH1: channel 1/CH2: channel 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
| "XMA? 0,251"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : Request for outputting 251 pieces of data from the TRAC (XMA), i.e., data from the 0th to 250th point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CE-A waveform memory    |
| (Setting the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ontroller to 1-byte binary data input mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| Reading one b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | byte (1st byte) $ ightarrow$ Storing it in numerical variable A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| Reading one b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | byte (2nd byte) $ ightarrow$ Storing it in numerical variable B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| Reading one b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | byte (3rd byte) $ ightarrow$ Storing it in numerical variable C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Looping for 251 times   |
| Reading one b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | byte (4th byte) $ ightarrow$ Storing it in numerical variable D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| Calculating the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e measured value from A, B, C, and D and storing it $\rightarrow$ X(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
| In the second secon | or two bytes (Reading the delimiter and discarding it)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
| Oth poin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | It     1st point     2nd point     3rd point       Image: Strain Stra | 250th point Delimiter   |

Note:

After the final piece of data is output, CR+LF (2 bytes) or LF (1 byte) is output as a delimiter. The delimiter may be changed using the "TRM n" command.

Section 7 Reading Sweep Control/Measurement Data

# Section 8 Writing and Reading Measurement Condition Data Table

| 8.1 | Overview of Measurement Condition Data Table | 8-2 |
|-----|----------------------------------------------|-----|
| 8.2 | Device Messages for Writing and Reading      | 8-3 |
| 8.3 | Procedure for Writing Data to Data Tables    | 8-4 |
| 8.4 | Procedure for Reading Data from Data Tables  | 8-5 |

#### Section 8 Writing and Reading Measurement Condition Data Table

# 8.1 Overview of Measurement Condition Data Table

The device stores in itself the measurement conditions corresponding to the measurement points, as data tables. In general, setting the measurement parameters automatically creates these tables. To change the condition data corresponding to a given measurement point in these tables, use a remote command or operate the front panel. The changed data tables can be saved to or recalled from auxiliary storages such as floppy disks, internal memory, and memory cards.

For details of data tables for measurement conditions, see Section 5.4.6, "List sweep" in the Vol. 1 Panel Operation manual.

#### Note:

Setting a measurement parameter automatically creates these data tables. Even though this function is used to change any given data in data tables, setting a measurement parameter again updates the contents of these data tables.

Therefore, a function is provided to prevent the data tables from being updated when a measurement parameter is set (the table guard function).

"TBGRD n" 0: table guard OFF (initial state) 1: table guard ON

# 8.2 Device Messages for Writing and Reading

The following shows the device messages used to write and read data to measurement condition data tables.

| Data table           | Command header name | Measurement channel for writing and reading |      |  |  |  |  |  |  |
|----------------------|---------------------|---------------------------------------------|------|--|--|--|--|--|--|
|                      | FQM                 | Access channel                              | Note |  |  |  |  |  |  |
| Frequency data table | FQMA                | Measurement channel 1                       |      |  |  |  |  |  |  |
|                      | FQMB                | Measurement channel 2                       |      |  |  |  |  |  |  |
|                      | LVM                 | Access channel                              | Note |  |  |  |  |  |  |
| Level data table     | LVMA                | Measurement channel 1                       |      |  |  |  |  |  |  |
|                      | LVMB                | Measurement channel 2                       |      |  |  |  |  |  |  |
| RBW data table       | RBTB                | Access channel                              | Note |  |  |  |  |  |  |
| User wait data table | UWTB                | Access channel                              | Note |  |  |  |  |  |  |

#### Note:

The "SRW" command allows you to specify the access channel.

"SRW ACT": Specifies the active channel as the access channel (initial state).

"SRW CH1": Specifies the measurement channel 1 as the access channel.

"SRW CH2": Specifies the measurement channel 2 as the access channel.

#### Frequency data table

- The data is input and output in real numbers, assuming 1 Hz=1.
- The setting range is 0 Hz to 300,000,000 Hz.
- The data is input and output in the ASCII (character string) format.

#### Level data table

- The data is input and output in real numbers, assuming 1 dBm=1.
- The setting range is the same as for the OUTPUT POWER setting parameter.
- The data is input and output in the ASCII (character string) format.

#### **RBW data table**

- As when the RBW is set as a measurement parameter, the data is input and output in the numerical code corresponding to each RBW.
- The data is input and output in the ASCII (character string) format.

#### User wait data table

- The data is input and output in real numbers, assuming 1 msec=1.
- The setting range is from 0.01 m sec to 7,200,000 m sec.
- The data is input and output in the ASCII (character string) format.

#### Note:

The number of data arrays in all the measurement condition data tables is 1001 points.

Section 8 Writing and Reading Measurement Condition Data Table

# 8.3 Procedure for Writing Data to Data Tables

The following shows an example of writing data to a frequency data table. The procedure of writing data to other data tables is the same as below.

Format of writing data to a frequency data table :

"FQM m, n, d1, d2, ...dn"

- m: Sets the measurement point at which to start writing data (0 to 1000).The leftmost measurement point in the measurement screen is 0, and the rightmost point is (the number of measurement points 1).
- n: Sets the total number of measurement points at which to write data (1 to 1001).The frequency data from the measurement point, m to m+n-1 is re-written.
- d1, d2, ...dn: Sets the frequency data to write.

Write as many data pieces as n, separating them with commas.

Example of writing:

"FQM 0, 3, 10MHZ, 20MHZ, 30MHZ"

The frequency data of 10 MHz, 20 MHz, and 30 MHz for three points starting from Point 0, i.e., at Points 0, 1, and 2 is written to the frequency tables for designated measurement channels.

Alternately, you may use the following format if there are many data points to write data to:

```
"FQM m, n"
"FQMD d1"
"FQMD d2"
•
•
```

#### Note:

To send only write data from the controller to the measuring instrument, attach a header indicating data at the beginning of each send data (add "D" at the end of a command header requesting for writing). This data header may be omitted.

#### Example:

"FQMD 1230000" : Meaning that the designated channel is written to at the frequency of 1,230,000 Hz."FQMBD 456000" : Meaning that Channel 1 is written to at the frequency of 456,000 Hz.

# 8.4 Procedure for Reading Data from Data Tables

The following shows an example of reading data from a frequency data table. The procedure of reading data from other data tables is the same as below.

Format of reading data from a frequency data table :

"FQM? m, n"

- m: Sets the measurement point at which to start reading data (0 to 1000).The leftmost measurement point in the measurement screen is 0, and the rightmost point is (the number of measurement points 1).
- n: Sets the total number of measurement points at which to read data(1 to 1001). The frequency data from the measurement point, m to m+n-1 is read.

The following shows an example of reading data for 251 points in total (Points 0 to 250) from the beginning of the frequency data table on the measurement channel 1 to the controller.

"FQMA? 0,251" : Request for outputting 251 pieces of data from the frequency data/level data on the measurement channel 1, i.e., data from the 0th to 250th point.

Reading and storing data at one point  $\rightarrow \rightarrow X(n)$ 

Looping for 251 times

End

-Order of output data-



The delimiter is either CR+LF or LF.

Section 8 Writing and Reading Measurement Condition Data Table

# **Section 9**

# **Details of Other Device Messages**

| 9.1 Group Delay Measurement Function   | 9-2 |
|----------------------------------------|-----|
| 9.1.1 Format of Device Message         | 9-2 |
| 9.1.2 Calculating the group delay time | 9-2 |
| 9.1.3 Use of this function             | 9-3 |

Section 9 Details of Other Device Messages

# 9.1 Group Delay Measurement Function

## 9.1.1 Format of Device Message

Inquiry message: "GPDLY? P0, P1, CH, [, E]" Response data: t (group delay time)

- P0 :Specification of measurement point at a lower frequency (0 to 1000)
- P1 :Specification of measurement point at a higher frequency (0 to 1000)
- CH :Specification of measurement channel (CH1: 1/CH2: 2)
- E :Specification of decimal place in calculation result (0 to -12)

## 9.1.2 Calculating the group delay time

Using the measurement data (magnitudes of vector) and measurement frequencies at two measurement points, calculate a phase difference and a frequency difference to obtain the group delay time.

The frequency difference in this case is called the aperture frequency.

Obtaining the group delay time at the frequency, Fc (center frequency between F0 and F1)



Procedure of calculation

- 1. Use the measurement and frequency data for the measurement channel designated by CH.
- 2. Read the measured values (magnitude of vector) at the measurement points designated by P0 and P1.
- 3. Convert each of the measured values to a magnitude of phase.  $\rightarrow \theta 0, \theta 1$  (deg)
- 4. Read the measurement frequencies at the measurement points designated by P0 and P1.  $\rightarrow$  f0, f1 (Hz)
- 5. The value obtained in the following calculation is defined as the group delay time.
- $\left( \theta \ 1 \theta \ 0 \right) / \left\{ 360 \times (f1 f0) \right\} \ 
  ightarrow au$
- 6. Using the value designated by E, perform the following calculation and store the result in a numerical variable.  $\tau \times 10^{E} \rightarrow$  Stored in a numerical variable.

The assignment of E may be omitted. In this case, E=0 is assumed for calculation.

#### 9.1 Group Delay Measurement Function

Note:

- As the measurement data to be converted into magnitudes of phase, use the vector data in the complex measurement memory. Since this data is not yet processed according to the measurement format such as LOGMAG or PHASE, the result of this function does not depend on the measurement format. However, the measurement data compensation or manipulation due to the X-S, smoothing, and subtrace processing performed after the data processing according to the measurement format is not reflected in the result of this function.
- If the frequency difference (f1 f0) is 0 Hz, 0 is returned as the function result.
- If the value of  $(\theta \ 1 \theta \ 0)$  is larger than 180 deg, or smaller than -180 deg, subtract or add 360 deg from/to it respectively and assume the result as the phase difference.

## 9.1.3 Use of this function

This function allows you to calculate the group delay time at a given frequency point at a given aperture frequency.

Using this function, you can obtain the group delay time values only for some predetermined frequencies, regardless of the format.

The following precautions apply for using this function.

• The data compensated or manipulated using the normalize (X-S), smoothing, or subtrace function (scaler data) cannot be used.

Therefore, the compensation or manipulation of data normally performed in a measuring instrument must be performed in an external application program of the user.

• The data at two measuring points is needed to obtain the group delay time at one measurement frequency.

The following shows an example of calculating the group delay time using this function including the use of normalize (X-S) calibration.

- 1. Obtain the group delay time at the frequency, Fc and the aperture frequency, Fap.
- Obtain the frequencies at the two measurement points as follows: F0=Fc-Fap/2 (the lower frequency) F1=Fc+Fap/2 (the higher frequency)
- 3. In the frequency data table for the channel to be measured, set F0 and F1 at measurement points, P0 and P1, respectively (P0 < P1). As required, set data also in the user wait table and RBW table. For information on setting data in the frequency, user wait, and RBW data tables, see Section 8, "Writing and Reading Data to and from Measurement Condition Data Table."</p>
- 4. Directly connect the input and output of this measuring instrument to perform the normalize calibration sweep (X  $\rightarrow$  S, X-S).
- 5. After the calibration sweep is completed, execute this group delay function to read the response data  $\rightarrow \tau s$  ( $\tau s$  represents the group delay time before the calibration).
- 6. Connect the unit under measurement to perform sweep measurement.
- 7. After the sweep is completed, execute this function again to read the response data.  $\rightarrow \tau x$
- 8. Obtain the group delay time after the normalize calibration at the frequency, Fc as:  $\tau x = \tau x \tau s$ .

Section 9 Details of Other Device Messages

# Appendix

| Appendix A | Device-specific Initial Setting/List of Initialization Conditions | A-1 |
|------------|-------------------------------------------------------------------|-----|
| Appendix B | ASCII Code List                                                   | B-1 |
| Appendix C | Comparison Table for GPIB Commands of Controllers                 | C-1 |

Appendix

# Appendix A Device-specific Initial Setting/List of Initialization Conditions

Condition setting for measuring instruments and initial set values for parameters are shown in the following table. Whether initialization is performed by the initialization commands (\*RST, INI) is also indicated.

Items whose \*RST field is filled in by a circle Items whose INI field is filled in by a circle : initialized by the \*RST command

: initialized by the INI command

| Group          | Device parameter            | Initial value | *RST | INI |
|----------------|-----------------------------|---------------|------|-----|
| CHANNELS       |                             |               |      |     |
| MENU           | Measuring channel           | CH1           | 0    | 0   |
|                | Coupled channel             | ON            | 0    | 0   |
| ACTIVE         | Active channel              | CH1           | 0    | 0   |
| MEAS           | Measuring (analytical) port | TA/R          | 0    | 0   |
| FORMAT         | Measurement format          | LOGMAG        | 0    | 0   |
|                | Impedance marker form       | Z/θ           | 0    | 0   |
|                | Admittance marker form      | Y/θ           | 0    | 0   |
|                | Phase offset                | 0 deg         | 0    | 0   |
| MEASUREMENT    |                             |               |      |     |
| FREQUENCY/SPAN | Center frequency            | 150 MHz       | 0    | 0   |
|                | Frequency span              | 100 MHz       | 0    | 0   |
|                | Start frequency             | 10 MHz        | 0    | 0   |
|                | Stop frequency              | 300 MHz       | 0    | 0   |
|                | Log start frequency         | 10 MHz        | 0    | 0   |
|                | Log stop frequency          | 300 MHz       | 0    | 0   |
|                | Frequency setting mode      | START/STOP    | 0    | 0   |
|                | Linear/log mode             | LINEAR        | 0    | 0   |
| AVG            | Averaging count             | 1             | 0    | 0   |
|                | Smoothing                   | 0 %           | 0    | 0   |
|                | Delay aperture              | 0.4 %         | 0    | 0   |
|                | Resolution bandwidth        | 20 kHz (AUTO) | 0    | 0   |
|                | Averaging type              | SUM           | 0    | 0   |
| SWEEP          | Sweep mode                  | REPEAT        | 0    | 0   |
|                | Sweep time                  | 75 ms (AUTO)  | 0    | 0   |
|                | Marker sweep                | OFF           | 0    | 0   |
|                | Measuring point             | 501           | 0    | 0   |
|                | Breakpoint                  | 1001          | 0    | 0   |
|                | External trigger            | OFF (INT)     | 0    | 0   |
|                | External trigger mode       | NORMAL        | 0    | 0   |
|                | External trigger edge       | RISE          | 0    | 0   |
| OUT/INPUT      | Output power                | -6 dBm        | 0    | 0   |
|                | Source power                | –6 dBm        | 0    | 0   |
|                | Output ATT (option)         | 0 dB          | 0    | 0   |
|                | Output offset               | 0 dB          | 0    | 0   |

### Appendix A

| Group        | Device parameter            | Initial value | *RST | INI            |
|--------------|-----------------------------|---------------|------|----------------|
| OUT/INPUT    | Power sweep                 | OFF           | 0    | 0              |
|              | Start power                 | 0 dBm         | 0    | 0              |
|              | Stop power                  | 0 dBm         | 0    | 0              |
|              | Step                        | 0 dB          | 0    | 0              |
|              | Output port                 | OUTPUT-B      | 0    | 0              |
|              | Input range-R               | 0 dBm         | 0    | 0              |
|              | Input range-TA              | 0 dBm         | 0    | 0              |
|              | Input range-TB (option)     | 0 dBm         | 0    | 0              |
|              | Input impedance-R           | 50/75 Ohm     | 0    | 0              |
|              | Input impedance-TA          | 50/75 Ohm     | 0    | 0              |
|              | Input impedance-TB (option) | 50/75 Ohm     | 0    | 0              |
|              | Standard impedance          | 50 Ohm        | 0    | 0              |
| CALIBRATION  |                             |               |      |                |
| CAL          | Calibration type            | RESPONSE      | 0    | 0              |
|              | Through line offset length  | 0.0 mm        | 0    | 0              |
|              | Open device parameter       | All 0.0       | 0    | 0              |
|              | Open device offset length   | 0.0 mm        | 0    | 0              |
|              | Short device offset length  | 0.0 mm        | 0    | 0              |
|              | Calibration data taking in  | DEFAULT       | 0    | 0              |
|              | Normalize (X-S)             | OFF           | 0    | 0              |
|              | S memory data               | Indefinite    | 0    | 0              |
| DISPLAY      |                             |               | •    |                |
| SACLE        | Scale                       | 10 dB/        | 0    | 0              |
|              | Offset                      | -50.0 dB      | 0    | 0              |
|              | Offset line                 | 5 (CENTER)    | 0    | 0              |
| ACTIVE TRACE | Active trace                | TRACE-A       | 0    | 0              |
| TRACE        | Split display               | OFF           | 0    | 0              |
|              | Waveform storage            | OFF           | 0    | 0              |
|              | Overwrite                   | OFF           | 0    | 0              |
|              | Grid type                   | ALL           | 0    | 0              |
|              | Display item                | SETUP-A:ON    | 0    |                |
|              |                             | SETUP-B:ON    |      |                |
|              |                             | MEAS PRMS:ON  |      |                |
|              |                             | FREQ:OFF      |      |                |
|              |                             | MENU:OFF      |      |                |
|              |                             | SWEEP MKR:ON  |      |                |
|              |                             | CHART-A:OFF   |      |                |
|              |                             | CHART-B:OFF   |      |                |
|              |                             | TRACE-A:OFF   |      |                |
|              |                             | TRACE-B:OFF   |      |                |
|              |                             | MARKER-A:ON   |      |                |
|              |                             | MARKER-B:ON   |      |                |
|              |                             | TOP LINE:ON   |      |                |
|              | Subtrace ON/OFF             | OFF           | 0    |                |
|              | Subtrace type               | MT=ST         | Õ    | $\overline{0}$ |
|              |                             |               | -    |                |

## Device-specific Initial Setting/List of Initialization Conditions

| Group     | Device parameter                      | Initial value                      | *RST | INI     |
|-----------|---------------------------------------|------------------------------------|------|---------|
| MARKER    |                                       |                                    |      |         |
| MKR       | Active marker number                  | 0                                  | 0    | 0       |
|           | Number of ON markers                  | 1                                  | 0    | 0       |
|           | Marker position                       | 250 point                          | 0    | 0       |
|           | Marker mode                           | NORMAL                             | 0    | 0       |
|           | Reference marker number               | 0                                  | 0    | 0       |
|           | Marker list                           | OFF                                | 0    | 0       |
| FCTN      | Marker function                       | All OFF                            | 0    | 0       |
| UTILITY   |                                       |                                    |      |         |
| FILTER    | Filter analysis function              | OFF                                | 0    | 0       |
|           | Filter nominal center frequency       | 150 MHz                            | 0    | 0       |
|           | Insertion loss calculation standard   | FILTER CF                          | 0    | 0       |
|           | Bandwidth calculation standard        | FILTER CF                          | 0    | 0       |
|           | X1 dB drop band X1 dB                 | 3.0 dB                             | 0    | 0       |
|           | X2 dB drop band X2 dB                 | 60.0 dB                            | 0    | 0       |
|           | Ripple search start frequency         | 10 kHz                             | 0    | 0       |
|           | Ripple search end frequency           | 300 MHz                            | 0    | 0       |
|           | Ripple resolution                     | 0.02 dB                            | 0    | 0       |
|           | Frequency result display place number | 6                                  | 0    | 0       |
|           | Analysis result                       | All 0                              | 0    | 0       |
| RESONATOR | Resonator analysis function           | OFF                                | 0    | 0       |
|           | Analysis types                        | RESON1                             | 0    | 0       |
|           |                                       | MIN/MAX IMPD                       |      |         |
|           | Analysis band start frequency         | 10 kHz                             | 0    | 0       |
|           | Analysis band end frequency           | 300 MHz                            | 0    | 0       |
|           | Frequency result display place number | 6                                  | 0    | 0       |
| LIMIT     | Analysis result                       | All 0                              | 0    | 0       |
|           | Limit line test function              | OFF                                | 0    | 0       |
|           | Limit line type                       | SEGMENTED                          | 0    | 0       |
|           | Single line standard value (Y)        | 0 dB (both upper and lower limits) | 0    | 0       |
|           | Segment line standard value (X)       | 10 Hz, 300 MHz                     | 0    | 0       |
|           | Segment line standard value (Y)       | 0 dB, 0 dB                         | 0    | 0       |
|           | Test results                          | NO TEST                            | 0    | 0       |
|           | BEEP ON/OFF                           | OFF                                |      | $\circ$ |

### Appendix A

| Group        | Device parameter                  | Initial value               | *RST | INI |
|--------------|-----------------------------------|-----------------------------|------|-----|
| COPY&MEMORY  |                                   |                             |      |     |
| COPY CONTROL | GPIB address                      | 1                           |      |     |
|              | GPIB control function             | DEVICE                      |      |     |
|              | ENABLE REGSTER ALL                | OFF                         |      |     |
|              | Terminator                        | LF&EOI                      |      |     |
|              | Time-out                          | 20 sec                      |      |     |
|              | Active port                       | GPIB                        |      |     |
|              | RS-232C control function          | CONTROLLER                  |      |     |
|              | BAUD RATE                         | 9600 bps                    |      |     |
|              | DATA BITS                         | 8 bit                       |      |     |
|              | STOP BIT                          | 1                           |      |     |
|              | PARITY                            | OFF                         |      |     |
|              | Device for copying                | VIDEO OUT                   |      |     |
| SAVE/RECALL  | SAVE ITEM                         | Only PARAM for both channel | 0    | 0   |
|              |                                   | 1 and channel 2 : ON        |      |     |
|              | Drive selection                   | FD                          | 0    |     |
|              | Title display                     | OFF                         | 0    | 0   |
|              | Title registering character       | null                        | 0    | 0   |
| SYSTEM       |                                   |                             |      |     |
| USER PRESET  | Marker setting mode               | POINT                       | 0    |     |
|              | Impedance measurement type        | TRANSFER                    | 0    |     |
| COLOR        | Display color (1st screen)        | Red                         | 0    |     |
|              | Display color (2nd screen)        | White                       | 0    |     |
|              | Display color (3rd screen)        | White                       | 0    |     |
|              | Display color (4th screen)        | Blue                        | 0    |     |
|              | Display color (5th screen)        | Pale blue                   | 0    |     |
|              | Display color (6th screen)        | Purple                      | 0    |     |
|              | Display color (7th screen)        | White                       | 0    |     |
|              | Display color (8th screen)        | Green                       | 0    |     |
|              | Display color (9th screen)        | Yellow                      | 0    |     |
|              | Display color (10th screen)       | Dark green                  | 0    |     |
|              | Display color (11th screen)       | Dark yellow                 | 0    |     |
|              | Display color (12th screen)       | Red                         | 0    |     |
|              | Display color (13th screen)       | Dark white                  | 0    |     |
|              | Display color (14th screen)       | Dark white                  | 0    |     |
|              | Display color (15th screen)       | White                       | 0    |     |
|              | Display color (16th screen)       | White                       | 0    |     |
|              | Display color (background screen) | Dark black                  | 0    |     |
| РТА          | PTA ON/OFF                        | OFF                         | 0    |     |
| BASK LIGHT   | BACK LIGHT ON/OFF                 | ON                          | 0    | 0   |

# Appendix B ASCII Code List

|    | B7        | B6      |    | 0  | 0          |     | 0   | 0           |    | 0  | 1        |               | 0          | 1        |    | 1   | 0        |       | 1     | 0        |     | 1   | 1    |           | 1     | 1    |     |  |
|----|-----------|---------|----|----|------------|-----|-----|-------------|----|----|----------|---------------|------------|----------|----|-----|----------|-------|-------|----------|-----|-----|------|-----------|-------|------|-----|--|
|    |           | 20      | B5 |    |            | 0   |     | 1           |    |    | -        | 0             |            | •        | 1  |     |          | 0     |       |          | 1   |     | -    | 0         |       |      | 1   |  |
| B4 | BIT<br>B3 | S<br>B2 | B1 |    | С          | ON. | TRO | DL          |    |    | N<br>S   | UM<br>YM      | BEF<br>BOL | IS<br>.S |    |     | UPI      | PEF   | CA    | SE       |     |     | LO   | WEF       | ≀ CA  | CASE |     |  |
|    |           |         |    | 0  |            |     | 20  |             |    | 40 |          |               | 60         |          |    | 100 | _        |       | 120   |          |     | 140 |      |           | 160   |      |     |  |
| 0  | 0         | 0       | 0  | 0  | NUL        | 0   | 10  | DLE         | 6  | 20 | SP       | 32            | 30         | 0        | 48 | 40  | @        | 64    | 50    | Ρ        | 80  | 60  | `    | 96        | 70    | р    | 112 |  |
|    |           |         |    | 1  | (          | GTL | 21  | LL          | 0  | 41 |          |               | 61         |          |    | 101 |          |       | 121   | _        |     | 141 |      |           | 161   |      |     |  |
| 0  | 0         | 0       | 1  | 1  | SOH        | 1   | 11  | DC1         | 7  | 21 | !        | 33            | 31         | 1        | 49 | 41  | А        | 65    | 51    | Q        | 81  | 61  | а    | 97        | 71    | q    | 113 |  |
|    | 0         |         | 0  | 2  |            |     | 22  | <b>D</b> 00 |    | 42 |          |               | 62         | •        |    | 102 | _        |       | 122   | _        |     | 142 |      |           | 162   |      |     |  |
| 0  | 0         | I       | 0  | 2  | NUL        | 2   | 12  | DC2         | 8  | 22 |          | 34            | 32         | 2        | 50 | 42  | в        | 66    | 52    | к        | 82  | 62  | D    | 98        | 72    | r    | 114 |  |
|    | 0         | 1       | 1  | 3  | <b>FTV</b> |     | 23  | <b>D</b> 00 |    | 43 |          |               | 63         | 0        |    | 103 | ~        |       | 123   | ~        |     | 143 | _    |           | 163   |      |     |  |
| 0  | 0         | 1       | I  | 3  | EIX        | 3   | 13  | DC3         | 9  | 23 | #        | 35            | 33         | 3        | 51 | 43  | C        | 67    | 53    | 5        | 83  | 63  | С    | 99        | 73    | S    | 115 |  |
|    | 1         | 0       | 0  | 4  | FOT        | SDC | 24  | DO          | L  | 44 | <u> </u> |               | 64         | 4        |    | 104 | <u> </u> |       | 124   | -        |     | 144 | -1   |           | 164   |      |     |  |
| 0  | 1         | 0       | 0  | 4  | EOI        | 4   | 14  | DC4         | 20 | 24 | 5        | 36            | 34         | 4        | 52 | 44  | D        | 68    | 54    | I        | 84  | 64  | a    | 100       | 74    | τ    | 116 |  |
| 0  | 1         | 0       | 1  | 5  |            | PPC | 25  | PP          | U  | 45 | 0/       |               | 65         | F        |    | 105 | F        |       | 125   |          |     | 145 | ~    |           | 165   |      |     |  |
|    | 1         | 0       | 1  | 5  | ENU        | 5   | 15  | INAR 2      | 21 | 25 | 70       | 37            | 35         | 5        | 53 | 45  | E        | 69    | 55    | U        | 85  | 65  | е    | 101       | 75    | u    | 117 |  |
| 0  | 1         | 1       | 0  | 6  | ACK        |     | 26  | QVN         |    | 46 | ø        |               | 66         | 6        |    | 106 | E        |       | 126   | v        |     | 146 | f    |           | 166   | v    |     |  |
| 0  | 1         | 1       | 0  | 6  | AUK        | 6   | 16  | 3 TN 2      | 22 | 26 | α        | 38            | 36         | 0        | 54 | 46  | Г        | 70    | 56    | v        | 86  | 66  | I    | 102       | 76    | v    | 118 |  |
| 0  | 1         | 1       | 1  | 7  | BEI        |     | 27  | ETR         |    | 47 | ,        |               | 67         | 7        |    | 107 | G        |       | 127   | w        |     | 147 | a    |           | 167   | \A/  |     |  |
| 0  | 1         | 1       | 1  | 7  | DLL        | 7   | 17  | 2           | 23 | 27 |          | 39            | 37         | '        | 55 | 47  | u        | 71    | 57    | vv       | 87  | 67  | y    | 103       | 77    | vv   | 119 |  |
| 1  | 0         | 0       | 0  | 10 | BS         | GET | 30  | CAN         | Έ  | 50 | (        |               | 70         | 8        |    | 110 | н        |       | 130   | x        |     | 150 | h    |           | 170   | Y    |     |  |
| 1  | 0         | 0       | 0  | 8  | 00         | 8   | 18  | 2           | 24 | 28 | (        | 40            | 38         | 0        | 56 | 48  |          | 72    | 58    | ~        | 88  | 68  |      | 104       | 78    | ^    | 120 |  |
| 1  | 0         | 0       | 1  | 11 | нт         | ГСТ | 31  | SP<br>FM    | D  | 51 | )        |               | 71         | 9        |    | 111 | ī        |       | 131   | Y        |     | 151 | i    |           | 171   | v    |     |  |
| 1  | 0         | 0       | 1  | 9  |            | 9   | 19  | 2           | 25 | 29 | ,        | 41            | 39         | Ũ        | 57 | 49  | •        | 73    | 59    |          | 89  | 69  |      | 105       | 79    | y    | 121 |  |
| 1  | 0         | 1       | 0  | 12 | ١F         |     | 32  | SUB         |    | 52 | *        |               | 72         | :        |    | 112 | J        |       | 132   | 7        |     | 152 | i    |           | 172   | 7    |     |  |
|    |           |         |    | A  |            | 10  | 1A  | 2           | 26 | 2A |          | 42            | 3A         |          | 58 | 4A  | •        | 74    | 5A    |          | 90  | 6A  | ,    | 106       | 7A    |      | 122 |  |
| 1  | 0         | 1       | 1  | 13 | VT         |     | 33  | ESC         |    | 53 | ÷        |               | 73         | ;        |    | 113 | к        |       | 133   | 1        |     | 153 | k    |           | 173   | {    |     |  |
|    | _         |         |    | В  |            | 11  | 1B  | 2           | 27 | 2B |          | 43            | 3B         |          | 59 | 4B  |          | 75    | 5B    | •        | 91  | 6B  |      | 107       | 7B    |      | 123 |  |
| 1  | 1         | 0       | 0  | 14 | FF         |     | 34  | FS          |    | 54 | ,        |               | 74         | <        |    | 114 | L        |       | 134   | Ν        |     | 154 | Ι    |           | 174   | ;    |     |  |
|    |           |         |    | C  |            | 12  | 1C  | 2           | 28 | 2C |          | 44            | 3C         |          | 60 | 4C  |          | 76    | 5C    |          | 92  | 6C  |      | 108       | 7C    |      | 124 |  |
| 1  | 1         | 0       | 1  | 15 | CR         |     | 35  | GS          |    | 55 | _        |               | 75         | =        |    | 115 | М        |       | 135   | 1        |     | 155 | m    |           | 175   | }    |     |  |
|    |           |         |    | D  |            | 13  | 1D  | 2           | 29 | 2D |          | 45            | 3D         |          | 61 | 4D  |          | 77    | 5D    | -        | 93  | 6D  |      | 109       | 7D    |      | 125 |  |
| 1  | 1         | 1       | 0  | 16 | SO         |     | 36  | RS          |    | 56 |          |               | 76         | >        |    | 116 | Ν        |       | 136   | $\wedge$ |     | 156 | n    |           | 176   | ~    |     |  |
|    |           |         |    | E  |            | 14  | 1E  | 3           | 30 | 2E |          | 46            | 3E         |          | 62 | 4E  |          | 78    | 5E    |          | 94  | 6E  |      | 110       | 7E    |      | 126 |  |
| 1  | 1         | 1       | 1  | 1/ | SI         |     | 51  | US          |    | 57 | /        |               | ''         | ?        |    |     | 0        |       | 13/   | _        | UNI | 15/ | о    |           | ' R   | UBOU | т   |  |
|    |           |         |    | F  |            | 15  | 1F  | 3           | 31 | 2F |          | 47            | 3F         |          | 63 | 4F  |          | 79    | 5F    |          | 95  | 6F  |      | 111       | 7F    | ()   | 127 |  |
|    |           |         |    | Ad | idress     | 1   | Un  | iversal     |    |    | Lis      | sten<br>dress | 5          |          |    |     | Т        | alk a | ıddre | SS       |     | Sec | onda | ry a<br>d | ddres | s or |     |  |
|    |           |         |    |    | mail       |     | 001 | manu        |    |    | au       | ares          | 5          |          |    |     |          |       |       |          |     |     | mai  | u         |       |      |     |  |

KEY octal 25

PPU GPIB code

NAK

\*USA Standard Code for Information Interchange

hex 15 21

ASCII character decimal

B-1

|                                             |                               |                         |     | 1   | 1   |       | 1         |           |                 |                 |               |          |          |        |    |               | 1   |   |                      |             | (Đ           |
|---------------------------------------------|-------------------------------|-------------------------|-----|-----|-----|-------|-----------|-----------|-----------------|-----------------|---------------|----------|----------|--------|----|---------------|-----|---|----------------------|-------------|--------------|
| MSG                                         |                               | -                       |     |     |     |       | <br> <br> | <br> <br> | <br>Iq pəui<br> | <br>Lisb gn<br> | <br>insəM<br> |          | <br><br> |        |    |               |     |   |                      |             | S) dnc       |
| 1 1 1                                       | 7                             | b                       | q   | r   | s   | t     | n         | v         | w               | х               | y             | z        | }        | -      | {  | 2             | DEL |   |                      |             | /<br>nand Gr |
| MSG                                         |                               | -                       |     |     |     |       | +         | PCG       | iq pəui         | itəb ga         | insəM         | Į        |          |        |    |               |     |   |                      |             | Comn         |
| 1 1 0                                       | 9                             | ,                       | а   | q   | v   | q     | e         | f         | 50              | ų               | · <b>-</b> i  | j        | k        | 1      | m  | u             | 0   |   |                      |             | condary      |
| MSG                                         |                               | -                       |     |     | -   | juəu  | ıdiupə    | ot bər    | lgizza (        | (ATM)           | ) ssəip       | ner ad   | Liste    |        |    | $\rightarrow$ | UNT |   |                      |             | Se           |
| $\begin{array}{c} 1\\ 0\\ 1\end{array}$     | s,                            | Р                       | Ø   | ч   | s   | F     | U         | >         | M               | ×               | Υ             | Ζ        | ]        | 1      | [  | <             | I   |   | /<br>lk<br>dress     | oup<br>AG)  |              |
| MSG                                         |                               | -                       |     |     | -   | juəu  | ıdinpə    | ot bər    | l<br>gizzs (    | <br>(ATM)<br>   | ) ssaip       | ner ad   | Liste    | _      |    |               | ->  |   | Tal                  | (T/<br>Gr   |              |
| 1 0 0                                       | 4                             | 8                       | A   | в   | U   | D     | н         | ц         | U               | Н               | I             | J        | К        | L      | Μ  | N             | 0   |   |                      |             | _            |
| MSG                                         |                               | •                       |     |     | _   | juəu: | ıdinpə    | ot bən    | lgizza (        | (ALA)           | ) ssaip       | suer. ad | ətsi.J   |        |    |               | UNL |   |                      |             | p (PCG       |
| 0 1 1                                       | n                             | 0                       | -   | 2   | 3   | 4     | 5         | 9         | 7               | ~               | 6             | ••       | ••       | $\vee$ | =  | $\wedge$      | ć   |   | /<br>ten<br>dress    | dno<br>VG)  | /<br>nd Grou |
| MSG                                         |                               |                         |     |     | _   | juəu: | ıdiupə    | ot bən    | lgizza (        | <br>(VTW)<br>   | ) ssaip       | ner ad   | Liste    | _      |    |               |     |   | Lis                  | Grc<br>(L∕  | Comma        |
| $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ | 5                             | SP                      |     | -   | #   | ÷     | %         | &         | •               | )               | (             | *        | +        | ,      | Ι  |               | 1   |   |                      |             | rimary       |
| MSG                                         |                               |                         | TLO |     |     | DCL   | ЪРU       |           |                 | SPE             | SPD           |          |          |        |    |               |     |   | /<br>versal<br>nmand | d D         | Ц            |
| 0<br>0<br>1                                 | 1                             | DLE                     | DC1 | DC2 | DC3 | DC4   | NAK       | SYN       | ETB             | CAN             | EM            | SUB      | ESC      | FS     | GS | RS            | NS  |   | Con                  | Gro<br>(UC  |              |
| ①<br>MSG                                    |                               |                         | GTL |     |     | SDC   | PPC       |           |                 | GET             | TCT           |          |          |        |    |               |     |   | /<br>ress<br>nmand   | d Û         |              |
| 0<br>0                                      | 0                             | NUL                     | HOS | STX | ETX | EOT   | ENQ       | ACK       | BEL             | BS              | ΤH            | ΓF       | TV       | FF     | CR | OS            | SI  |   | Add<br>Con           | Groi<br>(AC |              |
|                                             | COLUMN                        | 0                       | 1   | 2   | 3   | 4     | 5         | 9         | 7               | 8               | 6             | A        | В        | С      | D  | Щ             | ц   |   |                      |             |              |
|                                             | $\downarrow$ $\downarrow$ $H$ | 0                       | -   | 0   |     | 0     |           | 0         |                 | 0               |               | 0        | 1        | 0      | 1  | 0             |     |   |                      |             |              |
|                                             | b2 →                          | 0                       | 0   | -   | -   | 0     | 0         | -         | -               | 0               | 0             | 1        | 1        | 0      | 0  | 1             |     | ] |                      |             |              |
|                                             | $\downarrow$ b3               | 0                       | 0   | 0   | 0   | -     |           |           | -               | 0               | 0             | 0        | 0        | -      | 1  | μ             | -   |   |                      |             |              |
| b6<br>b6<br>b5                              |                               | 0                       | 0   | 0   | 0   | 0     | 0         | 0         | 0               |                 | -             | 1        | 1        | 1      | 1  | -             |     |   |                      |             |              |
|                                             | Pite Street                   | $\overline{\mathbb{O}}$ |     |     |     |       |           |           |                 |                 |               |          |          |        |    |               |     |   |                      |             |              |

## Appendix B

Table B-1 GPIB interface messages (extended version)

|                  | Lootopu                 | address             | set                           | device        |         |                   |           |      |                |               |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |           |               | Printer | Plotter      |                        |           |           |                |          |                |     |                |            |              |    |    | TINI LINT              |
|------------------|-------------------------|---------------------|-------------------------------|---------------|---------|-------------------|-----------|------|----------------|---------------|------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------------|---------|--------------|------------------------|-----------|-----------|----------------|----------|----------------|-----|----------------|------------|--------------|----|----|------------------------|
| table            | Primarv                 | address             |                               | Decimal       | 0       | 1                 | 7         | 3    | 4              | 5             | 9          | ~ ∞      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10      | 11        | 12            | 13      | 14           | 15<br>16               | 17        | 18        | 19<br>20       | 21       | 22             | 23  | 25             | 26         | 27           | 28 | 29 | 30                     |
| ation            | g                       | ٦                   | b1                            | $\rightarrow$ | 0       | 1                 | 0         | 1    | 0              | 1             | 0          | 0        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 1         | 0             | 1       | 0            | $1 \\ 0$               | 1         | 0 -       | 1 0            | 1        | 0              | 1   | , 1            | 0          | 1            | 0  | -  | - 0                    |
| alloc            | n settin                | 0                   | $b_2$                         | $\rightarrow$ | 0       | 0                 | 1         | 1    | 0              | 0             |            | - 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       | 1         | 0             | 0       |              | 0                      | 0         |           | - 0            | 0        | -              |     | 0              | 1          | 1            | 0  | 0  |                        |
| ress             | s swicł                 | ю                   | b3                            | $\rightarrow$ | 0       | 0                 | 0         | 0    | 1              | 1             |            | - 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0         | 1             | -       |              | 0                      | 0         | 0         | 1              | 1        | 1              |     | 0              | 0          | 0            | 1  |    | - 1                    |
| Add              | vddres                  | 4                   | b4                            | $\rightarrow$ | 0       | -                 | 0         | 0    | 0              | 0             | 0 0        | - 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       | 1         | -             | -       |              | 0                      | 0         | 0 0       | 0 0            | 0        | 0              | 0 - | - 1            | 1          | 1            | 1  |    | -                      |
| В-3              | A                       | 5                   | b5                            | $\rightarrow$ | 0       | 0                 | 0         | 0    | 0              | 0             | 0 0        | ° 0      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0         | 0             | 0       | 0            | 0 1                    | 1         |           |                | 1        | 1              |     | 1              | 1          | 1            | 1  |    | - 1                    |
| Table            | haracter                | Listen              | b7 b <sub>6</sub>             | 0 1           | SP      |                   | ÷         | #    | S              | %             | & -        | J        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *       | +         | •             | I       |              | ~ 0                    | 1         | 0 0       | 0 <del>4</del> | 5        | 9              | L 8 | 6              |            | ••           | V  | II | ∧ I                    |
|                  | Address c               | Talk                | b <sub>7</sub> b <sub>6</sub> | 1 0           | ø       | А                 | В         | C    | D              | н             | ц C        | н        | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ŗ       | K         | Г             | Z       | Z            | 0 4                    | 0         | 2 0       | γF             | Ŋ        | >              | ≥ × | Ϋ́             | Z          | _            | /  | _  | < ~                    |
| e. Low level)    | 1 to DI07 sequence.)GTL |                     |                               |               |         |                   |           |      |                |               |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | guup    | Interface | message group | (G)     | المحمد مراجع | Addressed<br>command G | Universal | command G | Listen address | G        | Unlisten (UNL) |     | Talker Address | G          | Untalk (UNT) |    |    | Secondary<br>command G |
| I of Tru         | to DI0                  |                     |                               |               |         |                   |           |      |                |               |            |          | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sage    | ۵         | - c           | - c     |              | b1                     |           | b1        | 4              | 10       | <del>.</del>   | -   | 4              | 10         |              | _  |    | b1                     |
| bv ATN           | espond                  |                     |                               |               |         |                   |           |      | dn             | ц.            |            | dn       | la de |         | ۵         | c             | 20      |              | b2                     |           | b2        | <i>د</i> ط     | 02       | <del>.</del>   | -   | 4              | 04         |              | -  |    | b2                     |
| [(Sent]          | b7 con                  | r                   | gure                          | )             |         | ıfigure           |           |      | nd Gro         | nd Grou       | up<br>P    | nd Gro   | rfac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | ۵         | C             | იი      |              | b3                     |           | b3        | 43             | cn       |                | -   | 43<br>4        | <i>с</i> л |              | _  |    | b3                     |
| SSAGE            | hrough                  | ce Clea             | 1 Confi<br>ute Tri            | ol<br>Jiir    | n.      | I Uncoi<br>Znable | Disable   |      | Comma          | Jommar<br>200 | ss Grou    | Comma    | 2 Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | Δ         | c             | 04      |              | þ4                     |           | 44<br>4   | Ą              | 5        | <del>,</del>   | -   | Ζ              |            |              | -  |    | Ъ                      |
| JE ME            | )7 (b1 t                | o Local<br>ct Devic | llel Pol.<br>1p Exec          | Contro        | ice Cle | Ilel Pol          | al Foll I | sten | uk<br>ressed ( | versal C      | Addres     | indary ( |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | בי<br>ש |           | C             | ഹ       |              | 0                      |           |           | 24             | cn       | -              | -   | ۲<br>ر         | <i>C</i> 0 |              |    |    | b5                     |
| ERFAC            | b7=DI(                  | Sele                | Para<br>Grou                  | Take<br>Loca  | Devi    | Para              | Serié     | Unli | unts<br>Addı   | Univ<br>Lists | Talk       | Seco     | Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | Δ         | - c           | യ       |              | 0                      |           | 0         | ,              | 1        |                | -   | 0              |            |              | 0  |    | 1                      |
| ::<br>G=INT      | DI01                    |                     |                               |               |         |                   |           |      |                |               |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |           | c             | 2       |              | 0                      |           | 0         | 0              | <b>`</b> | c              | >   | -              | -          |              | _  |    | -                      |
| Notes<br>(1) MSe | © pl=                   | PPC                 | GET                           | DCL           | DPU     | SPE               | an<br>N   | INU  |                | (LAG)         | PCG<br>BCG |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |           | - C           | ω       |              | ×                      |           | ×         | >              | <        | >              | <   | >              | <          |              | ×  |    | ×                      |

**ASCII Code List** 

Appendix B

# Appendix C Comparison Table of GPIB Commands for Controllers

|                                                               | Controller                                                                                                                                                |                                                                                                                        |                      |                                                       |                                                                                                              |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Punction PACKET V                                             |                                                                                                                                                           | PC9800                                                                                                                 | IBM-PC<br>(NI-488.2) | IBM-PC<br>(NI-488)                                    | HP9000 series                                                                                                |
| Outputs data to a device                                      | WRITE @ device<br>number: data                                                                                                                            | PRINT<br>@ listener address; data                                                                                      | CALL Send()          | CALL<br>IBWRT()                                       | OUTPUT device selector; data                                                                                 |
| Output binary<br>data to a device                             | BIN WRITE @<br>device number: data                                                                                                                        | WBYTE command; data                                                                                                    | CALL SEND Cmds()     |                                                       |                                                                                                              |
| Assigns data<br>entered from a<br>device to a<br>variable     | READ<br>@ device number:<br>variable                                                                                                                      | INPUT @ talker address,<br>listener address; variable<br>LINE INPUT @ talker<br>address, listener address;<br>variable | CALL Receive()       | CALL<br>IBRD( )                                       | ENTER device selector; variable                                                                              |
| Assigns binary<br>data entered from<br>a device to a variable | BIN READ @<br>device number:<br>variable                                                                                                                  | RBYTE command;<br>variable                                                                                             |                      |                                                       |                                                                                                              |
| Initializes<br>an interface                                   | IFC @ select code                                                                                                                                         | ISET IFC                                                                                                               | CALL Send IFC()      | CALL<br>IBSIC()                                       | ABORT select code                                                                                            |
| Turns REN<br>line on                                          | REN @ select code                                                                                                                                         | ISET REN                                                                                                               | CALL Enable Remote() | CALL<br>IBSRE( )                                      | REMOTE device<br>selector<br>(select code)                                                                   |
| Turns REN<br>line off                                         | LCL @ select code<br>(sets all devices<br>local) LCL @<br>device number<br>(sets only specified<br>devices to listeners,<br>and sends out GTL<br>command) |                                                                                                                        | CALL Enable Local( ) | CALL<br>IBSRE()<br>CALL<br>IBLOC()                    | LOCAL device<br>selector<br>(select code )<br>LOCAL device<br>selector (select<br>code + primary<br>address) |
| Outputs interface<br>message(s) and<br>data                   | COMMAND<br>@ select code:<br>Character string for<br>message [;data]                                                                                      |                                                                                                                        |                      | CALL<br>IBCMD()<br>CALL<br>IBCMDA()<br>(asynchronous) | SEND select<br>code; message<br>string                                                                       |
| Triggers a specified device                                   | TRG @ device<br>number                                                                                                                                    | WBYTE & H3F, listener<br>address, secondary<br>address, &H08                                                           | CALL Trigger()       | CALL<br>IBTRG()                                       | TRIGGER<br>device selector                                                                                   |

## Appendix C

|                                                                           | Controller                                                                                                                       |                                                                                   |                                            |                                    |                                                                                                             |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Function                                                                  | PACKET V                                                                                                                         | PC9800                                                                            | IBM-PC<br>(NI-488.2)                       | IBM-PC<br>(NI-488)                 | HP9000 series                                                                                               |
| Initializes devices                                                       | CDL @ select code<br>(all devices having<br>a specified select<br>code)<br>DCL @ device<br>number<br>(specified devices<br>only) | WBYTE &H3F, &8H14;<br>WBYTE &H3F, listener<br>address, secondary<br>address, &H04 | CALL DevClear( )                           | CALL<br>IBCLR()                    | CLEAR device<br>selector<br>(select code)<br>CLEAR device<br>selector<br>(select code +<br>primary address) |
| Prevents a device<br>from being switche<br>d over from remote<br>to local | LLO @ select code                                                                                                                | WBYTE &H3F, &H11                                                                  | CALL SendLLO( ) CALL SetRWLS( )            | LOCAL<br>LOCKOUT                   |                                                                                                             |
| Transfers control<br>to a specified<br>device                             | RCT @ device<br>number                                                                                                           | WBYTE talker address,<br>&H09                                                     | CALL Pass Control()                        | CALL<br>IBPCT()                    | PASS CONTROL                                                                                                |
| Sends out a service request                                               | SRQ @ select code                                                                                                                | ISET SRQ                                                                          |                                            | CALL<br>IBRSV()                    | REQUEST<br>select code                                                                                      |
| Performs serial polling                                                   | STATUS @ device<br>number                                                                                                        | POLL                                                                              | CALL Read Status Byte()<br>CALL AllSpoll() | CALL<br>IBRSP()                    | SPOLL<br>(device selector)<br>(function)                                                                    |
| Sets a terminator code                                                    | TERM IS                                                                                                                          | CMD DELIM                                                                         |                                            | CALL<br>IBEOS()<br>CALL<br>IBEOT() |                                                                                                             |
| Sets a limit value<br>for checking a<br>time-out                          |                                                                                                                                  | CMD TIMEOUT                                                                       |                                            | CALL<br>IBTOM( )                   |                                                                                                             |
| Wait to SRQ                                                               |                                                                                                                                  |                                                                                   | CALL WaitSRQ()                             | CALL<br>IBWAIT( )                  |                                                                                                             |

MS4630B Network Analyzer Remote Operations (PTA Control) Operation Manual

# Contents

| Section 1 Outline                                | 1-1  |
|--------------------------------------------------|------|
| 1.1 PTA Specifications                           | 1-2  |
| 1.2 PTL Provided in the PTA                      | 1-4  |
| 1.3 External interfaces                          | 1-11 |
| 1.4 Structure of Screens of the Measuring Device | 1-12 |
| Section 2 Operating the PTA                      | 2-1  |
| 2.1 Operation Overview                           | 2-2  |
| 2.2 Starting the PTA                             | 2-2  |
| 2.3 Panel Operation                              | 2-3  |
| 2.4 Terminating the PTA                          | 2-6  |
| 2.5 External Keyboard                            | 2-7  |
| 2.6 Handling Storage Media                       |      |
| (Internal memory, FD and PMC)                    | 2-11 |
| Section 3 PTL Commands                           | 3-1  |
| 3.1 PROGRAM INPUT COMMANDS                       | 3-3  |
| 3.2 LINE NUMBER AUTOMATIC UPDATING COMMAND .     | 3-4  |
| 3.3 PCOPY COMMAND                                | 3-5  |
| 3.4 DELETE COMMAND                               | 3-6  |
| 3.5 RENUM COMMAND                                | 3-7  |
| 3.6 LIST COMMAND                                 | 3-8  |
| 3.7 LISTG COMMAND                                | 3-9  |
| 3.8 SAVEG COMMAND                                | 3-10 |
| 3.9 LOADG COMMAND                                | 3-11 |
| 3.10 PAGE SCROLL COMMAND                         | 3-12 |
| 3.11 ROLL UP/DOWN COMMANDS                       | 3-13 |
| 3.12 PMEMO COMMAND                               | 3-14 |
| 3.13 IMMEDIATE EXECUTION COMMAND                 | 3-15 |
| 3.14 RUN COMMAND                                 | 3-16 |
| 3.15 STOP COMMAND                                | 3-17 |
| 3.16 CONT COMMAND                                | 3-18 |
| 3.17 RESET COMMAND                               | 3-19 |
| 3.18 SAVE COMMAND                                | 3-20 |
| 3.19 LOAD COMMAND                                | 3-21 |
| 3.20 OVERLAY COMMAND                             | 3-22 |
| 3.21 PDEL COMMAND                                | 3-23 |
| 3.22 PLIST COMMAND                               | 3-24 |
| 3.23 STARTP COMMAND                              | 3-25 |
| 3.24 CANCEL COMMAND                              | 3-26 |

| Section 4 PTL                                                                                                                                                                                                                                                                       | 4-1                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| <ul><li>4.1 Components of A Statement</li><li>4.2 Basic Statements</li></ul>                                                                                                                                                                                                        | 4-3<br>4-15                             |
| Section 5 Extended PTL                                                                                                                                                                                                                                                              | 5-1                                     |
| <ul><li>5.1 System Variable</li><li>5.2 System Sub-Routine</li><li>5.3 System Function</li></ul>                                                                                                                                                                                    | 5-3<br>5-12<br>5-27                     |
| Section 6 Remote Control Command                                                                                                                                                                                                                                                    |                                         |
| Used by PTA Program                                                                                                                                                                                                                                                                 | 6-1                                     |
| <ul><li>6.1 Overview</li><li>6.2 Remote Control Command for PTA</li><li>6.3 Method of Program Transfer Between External</li></ul>                                                                                                                                                   | 6-2<br>6-3                              |
| Personal Computer and PTA                                                                                                                                                                                                                                                           | 6-4                                     |
| Section 7 External interface at PTA                                                                                                                                                                                                                                                 | 7-1                                     |
| <ul> <li>7.1 Overview</li> <li>7.2 Selection of Interface Port Controlled by PTA</li> <li>7.3 GPIB Function at PTA</li> <li>7.4 Parallel (Centronics) Funciton at PTA</li> <li>7.5 Dual Port Memory</li> </ul>                                                                      | 7-2<br>7-2<br>7-3<br>7-7<br>7-8         |
| Section 8 PTA Error Message                                                                                                                                                                                                                                                         | 8-1                                     |
| <ul> <li>8.1 ERROR Message Style</li> <li>8.2 ERROR Statement</li> <li>8.3 ERRMAIN Statement</li> <li>8.4 Error Processing Sub-Rutine</li> <li>8.5 Error List</li> </ul>                                                                                                            | 8-2<br>8-3<br>8-4<br>8-5<br>8-7         |
| Section 9 PTA Parallel I/O Port Control                                                                                                                                                                                                                                             | 9-1                                     |
| <ul> <li>9.1 Overview</li> <li>9.2 I/O Port Signal Explanation/Standard</li> <li>9.3 System Variable to Access I/O Port</li> <li>9.4 interrupt by I/O Port</li> <li>9.5 I/O Port Use Example</li> <li>9.6 Item Name and Applicable interface of I/O Port Tangential Line</li> </ul> | 9-2<br>9-2<br>9-5<br>9-7<br>9-8<br>9-11 |

# III

# **Section 1 Outline**

The Personal Test Automation (PTA) is a measuring device equipped with a programming language interpreter function. The PTA allows you to program the controls and calculations directly connected to a measuring system using a simple language named the Personal Test Language (PTL). The PTL consists of basic commands similar to the BASIC language, as well as GPIB control commands, file operation commands, screen control commands and function control commands that control most of the functions related to the measurements.

You can create, edit and execute a PTA program on the screen of this device using a full-scale keyboard. Alternatively, you can create and edit a PTA program on an external personal computer using a general-purpose editing program, and then register via the GPIB and execute it on this device.

The PTA is provided with such external interfaces as the GPIB, RS-232C, parallel (Centronics), and PTA parallel I/O port. The GPIB and RS-232C, used to connect this device to an external computer, allow the PTA and the external computer to communicate with each other. The PTA parallel I/O port, used to connect this device to an automatic checker or trimmer of electronic parts, allows the PTA to control these machines.

| 1.1 | PTA Specifications        |                                           |      |
|-----|---------------------------|-------------------------------------------|------|
| 1.2 | 2 PTL Provided in the PTA |                                           |      |
| 1.3 | 3 External interfaces 1   |                                           |      |
|     | 1.3.1                     | GPIB Interface                            | 1-11 |
|     | 1.3.2                     | RS-232C Interface                         | 1-11 |
|     | 1.3.3                     | Parallel (Centronics) Interface           | 1-11 |
|     | 1.3.4                     | PTA Parallel I/O Interface                | 1-11 |
| 1.4 | Struct                    | ure of Screens of the Measuring Device    | 1-12 |
|     | 1.4.1                     | Physical Structure of Screens             | 1-12 |
|     | 1.4.2                     | Display Coordinates of Measurement Screen | 1-13 |
|     |                           |                                           |      |

### Section 1 Outline

# **1.1 PTA Specifications**

The following shows the PTA specifications.

| ■ Screen                            |                                                                                                                                                                                                           |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Number of displayable characters: | 68 characters x 30 lines                                                                                                                                                                                  |
| • Displayable character types:      | Alphabet in upper and lower cases, numbers, special characters, and cursor                                                                                                                                |
| • Fonts:                            | $8 \times 16$ dots (small font)                                                                                                                                                                           |
| • Graphic display:                  | Straight lines, squares, circles, and arcs                                                                                                                                                                |
| • Screen:                           | $640 \times 480 \text{ dots} \times 16 \text{ screens}$                                                                                                                                                   |
| Input and execution control         |                                                                                                                                                                                                           |
| • Input:                            | Full-scale keyboard, front panel, and external computer (GPIB)                                                                                                                                            |
| • Execution control:                | Full-scale keyboard, front panel, and external computer (GPIB)                                                                                                                                            |
| ■ Memory                            |                                                                                                                                                                                                           |
| • Program memory:                   | 148 kilobytes                                                                                                                                                                                             |
| ■ Language, version PTL-V1.6        |                                                                                                                                                                                                           |
| • Commands:                         | Editing commands<br>Program execution control commands<br>File commands                                                                                                                                   |
| • Statements:                       | Basic statements<br>GPIB statements/PTA parallel I/O port statements<br>Dual port statements                                                                                                              |
| • Subroutines                       | Screen subroutines<br>File operation subroutines<br>Video plotter subroutines<br>GPIB subroutines<br>Interface subroutines<br>Panel subroutines<br>Waveform memory copy subroutines<br>Buzzer subroutines |
| • Functions:                        | Arithmetic functions<br>Logical functions<br>Statistical functions<br>Character string functions<br>System functions                                                                                      |

## 1.1 PTA Specifications

| Variables    | User-defined variables (numeric variables and character string                           |
|--------------|------------------------------------------------------------------------------------------|
|              | variables) up to 256                                                                     |
|              | System variables                                                                         |
| • Data types | Real numbers: Significant digits: 15, Exponents: 10 <sup>308</sup> to 10 <sup>-307</sup> |
|              | Integers: -32768 to +32767                                                               |
|              | Characters: Max. 255                                                                     |
|              | Bits: Max. 8                                                                             |
| ■ Interfaces |                                                                                          |

- GPIB
- RS-232C (Option 02)
- Parallel (Centronics) (Option 02)
- PTA parallel I/O port

Output port A: 8 bits Output port B: 8 bits Input/output port C: 4 bits Input/output port D: 4 bits Control port: 3 bits

### Section 1 Outline

# 1.2 PTL Provided in the PTA

The following shows the Personal Test Language (PTL) provided in the PTA.

| Item                                             | Format                                                                                            |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Editing commands                                 |                                                                                                   |
| • Entering a program                             | Line number Statement                                                                             |
| • Automatically updating the line numbers        | AUTO [Top line number] [, Increment]                                                              |
| • Copying                                        | PCOPY New top line number, [Increment], Source start line number, Source end line number          |
| • Deleting                                       | DELETE [Delete start line number] [, Delete end line number]]<br>or [Delete line number] [RETURN] |
| • Renumbering                                    | RENUN [New top line number[, Increment[, Old start line number[Old end line number]]]             |
| • List output (screen)                           | LIST [Start line number][, [End line number]]                                                     |
| • List output (printer)                          | LISTG Address[, Start line number][, [End line number]]                                           |
| Program size                                     | PMEMO                                                                                             |
| • Page scrolling / Reverse page scrolling        | [PAGE SCROLL] key / [SHIFT] + [PAGE SCROLL] key                                                   |
| Rolling up / Rolling down                        | [CTRL] + [J] key / [CTRL] + [K] key                                                               |
| Execution command                                |                                                                                                   |
| • Starting to execute the program                | [RUN] menu key, RUN[Start line number][Suspend line number]                                       |
| Suspending executing the program                 | [STOP] menu key                                                                                   |
| • Continuing executing the program               | [CONT] menu key, CONT[, Suspend line number]                                                      |
| • Canceling executing the program                | [RESET] menu key                                                                                  |
| • Executing immediately                          | Statement[RETURN]                                                                                 |
| ■ File commands                                  |                                                                                                   |
| • Saving a file                                  | SAVE Program name[, Start line number[, End line number]]                                         |
| • Overlay                                        | OVERLAY                                                                                           |
| • Loading a file                                 | LOAD Program name                                                                                 |
| • Displaying the file list                       | [PLIST]menu key                                                                                   |
| • Deleting a file                                | PDEL Program name                                                                                 |
| Startup registration                             | SATRTP Program name                                                                               |
| Startup cancellation                             | CANCEL                                                                                            |
| • Saving a program in other measuring devices    | SAVEG M                                                                                           |
| • Loading a program from other measuring devices | LOADG M                                                                                           |

| Item                                    | Format                                                                |
|-----------------------------------------|-----------------------------------------------------------------------|
| ■ Statements                            |                                                                       |
| • Remarks                               | REM ["Comment"] or 'Comment                                           |
| Array declaration                       | DIM Array variable                                                    |
| • Assignment                            | [LET] Variable=Equation(Function, Variable or Constant)               |
| • Branch                                | GOTO Line number or GOTO *Label                                       |
| • Branch to a subroutine                | GOSUB Line number or GOSUB *Label                                     |
| • Returning from a subroutine           | RETURN                                                                |
| • Decision                              | IF Condition Statement                                                |
| • Iteration start                       | FOR Numeric variable=Initial value TO End value [STEP Step value]     |
| • Iteration end                         | NEXT Numeric variable                                                 |
| • Input                                 | INPUT ["Displayed string",] Variable [, Variable]                     |
| • Display                               | PRINT Variable [: Data format] [, Variable [:Data format]] [;]        |
| • Reverse display                       | PRINTR Variable [: Data format] [, Variable [:Data format]] [;]       |
| • GPIB input                            | READ Address, Input variable                                          |
| • GPIB input (1 byte)                   | BREAD Address, Input variable                                         |
| • GPIB input (2 bytes)                  | WREAD Address, Input variable                                         |
| • GPIB output                           | WRITE Address, Variable [:Data format] [;]                            |
| • GPIB output (1 byte)                  | BWRITE Address, Variable [:Data format]                               |
| • GPIB input (2 bytes)                  | WWRITE Address, Variable [:Data format]                               |
| • Defining a measurement parameter      | PUT Character string variable (or Character constant)                 |
| • Reading the measurement parameter (1) | GET Character string variable (or Character constant), Input variable |
| • Reading the measurement parameter (2) | COM Character string variable (or Character constant)>Input variable  |
| • Waiting                               | WAIT Time (in seconds, min. 10 ms)                                    |
| • Calling a subroutine                  | CALL Subroutine name                                                  |
| • Moving the cursor (to home position)  | HOME                                                                  |
| • Moving the cursor                     | LOCATE (X, Y)                                                         |
| • Clearing the screen                   | ERASE                                                                 |
| • Terminating the program               | STOP                                                                  |
| • Syntax error statement                | Line number SOS Syntax error statement                                |
| • Error branch                          | ERROR (Error number, line number or label)                            |
| • Error main                            | ERRMAIN                                                               |
| • Returning the main routine            | RETMAIN                                                               |

### Section 1 Outline

| Item                                                                | Format                                                             |
|---------------------------------------------------------------------|--------------------------------------------------------------------|
| Initializing a variable                                             | CLEAR                                                              |
| Data statement                                                      | DATA Constant[, Constant, Constant]                                |
| • Specifying the input data statement                               | RESTORE [Line number or *Label]                                    |
| • Entering a data statement                                         | RDATA Variable[, Variable]                                         |
| Reading/executing a program                                         | CHAIN "File name"                                                  |
| • Registering an error interrupt routine                            | ON ERROR Line number or Label                                      |
| • Canceling the registration of an error interrupt routine          | OFF ERROR                                                          |
| • Returning from an error interrupt                                 | RETERR<br>RETRY<br>RESUME Line number or *Label<br>GIVEUP          |
| • Registering an event interrupt routine                            | ON EVENT I/O number, Line number or *Label                         |
| • Enabling an event interrupt                                       | ENABLE EVENT I/O number, Factor 3, Factor 2, Factor 1, Factor 0    |
| • Disabling an event interrupt                                      | DISABLE EVENT I/O number[, Factor 3, Factor 2, Factor 1, Factor 0] |
| • Returning from an event interrupt                                 | RETINE                                                             |
| • Interrupt branch (I/O port)                                       | ON IO GOTO Line number or *Label                                   |
| • Interrupt subroutine branch (I/O port)                            | ON IO GOSUB Line number or *Label                                  |
| • Enabling an interrupt (I/O port)                                  | IOEN                                                               |
| • Disabling an interrupt (I/O port)                                 | IODI                                                               |
| • Interrupt mask (I/O port)                                         | IOMA                                                               |
| • Specifying the character size                                     | DCHSIZE Character size number                                      |
| • Defining the pseudo-random number sequence                        | RNDMIZE                                                            |
| • Changing the output timing of the parallel I/O port write strobe. | OLDPORT                                                            |
| Dual port memory statements                                         |                                                                    |
| • Writing data                                                      | WDPM Memory number, Variable [:Data format]                        |
| Reading data                                                        | RDPM Memory number, Input variable                                 |
| ■ Screen subroutines                                                |                                                                    |
| • Deleting a display item                                           | CALL CER(M)                                                        |
| Returning a display item                                            | CALL CRN(M)                                                        |
| • Clearing the screen                                               | CALL CFL(M)                                                        |
| Displaying characters                                               | CALL DCH(X, Y, text, M[, N])                                       |
| • Drawing a line                                                    | CALL DLN(X0, Y0, X1, Y1, M[, N])                                   |
| • Drawing a square                                                  | CALL DRC(X0, Y0, X1, Y1, M[, N])                                   |

### 1.2 PTL Provided in the PTA

| Item                                                                  | Format                                                                                                                                                 |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Drawing a circle                                                    | CALL DCR(X, Y, R, M[, N])                                                                                                                              |
| • Drawing an arc                                                      | CALL DAR(X0, Y0, R0, W1, W2, M[, N])                                                                                                                   |
| • Drawing a OX                                                        | CALL DJG(X, Y, R, F, M1, M2)                                                                                                                           |
| • Registering a soft key label                                        | CALL DEF(M, text)                                                                                                                                      |
| File operation subroutines                                            |                                                                                                                                                        |
| • Opening a file (reading)                                            | CALL OPNI Character string variable (or Character constant)                                                                                            |
| • Opening a file (writing)                                            | CALL OPNO Character string variable (or Character constant)                                                                                            |
| • Deleting a file                                                     | CALL FDEL Character string variable (or Character constant)                                                                                            |
| Loading data                                                          | CALL DALD Variable                                                                                                                                     |
| • Saving data                                                         | CALL DASV Variable                                                                                                                                     |
| • Closing a file                                                      | CALL CLS                                                                                                                                               |
| ■ Video plotter subroutine                                            |                                                                                                                                                        |
| • Hard copying the screen                                             | CALL VPT                                                                                                                                               |
| Panel subroutines                                                     |                                                                                                                                                        |
| • Locking the operation of front panel                                | CALL PNLL(0)                                                                                                                                           |
| • Unlocking the operation of front panel                              | CALL PNLU(0)                                                                                                                                           |
| Waveform memory copy subroutines                                      |                                                                                                                                                        |
| Memory copy                                                           | CALL COPY(M0, M1)                                                                                                                                      |
| ■ GPIB subroutines                                                    |                                                                                                                                                        |
| • Clearing the interface<br>(Switching to the system controller port) | CALL IFC                                                                                                                                               |
| Service request                                                       | CALL RSV(M)                                                                                                                                            |
| • Switching to the device port                                        | CALL DEV                                                                                                                                               |
| ■ Interface subroutine                                                |                                                                                                                                                        |
| • Interface control                                                   | CALL GPIB (Port number, Control item number)                                                                                                           |
| ■ Buzzer subroutine                                                   |                                                                                                                                                        |
| • Buzzer calling                                                      | CALL BZR                                                                                                                                               |
| ■ Functions                                                           |                                                                                                                                                        |
| Arithmetic functions                                                  | SIN, COS, TAN, ASN, ACS, ATN, LN, LOG, EXP, SQR, ABS, SGN, INT, ROUND, DIV, FIX                                                                        |
| Logical functions                                                     | NOT, AND, OR, EOR                                                                                                                                      |
| String functions                                                      | CHR, VAL, HVAL, BVAL, ASC, CHR\$, CVI, CVD, MKI\$,<br>MKD\$, STR\$, HEX\$, OCT\$, BIN\$, INSTR, LEFT\$, MID\$,<br>RIGHT\$, STRING\$, LEN, SLEN, SGET\$ |

#### Section 1 Outline

| Item                                      | Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statistical functions                     | max, min, sum, mean, var, sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dedicated functions                       | ERRREAD, STATUS, DTREAD\$, RND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ■ System variables                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                           | EX0, EX1, EX2, EX3, EX4, EX5, EX6, DT0, DT1, DT2, DT3,<br>DT4, XMA, XMB, SMA, SMB, IMA, IMB, IDA, IDB, FQM,<br>LVM, IOA, IOB, IOC, IOD, EIO, TRC, CAL, CXS, MKR,<br>RMK, CMK, MKD, ZRA, ZRB, RFA, RFB, MVA, MVB, MKF,<br>STR, SAU, SCA, SCB, OFA, OFB, DF1, DF2, CNF, SPF, STF,<br>SOF, FRQ, SWT, LGF, IRG, OPL, SOL, SEL, LSW, AU1, AU2,<br>RBW, IMP, OVL, SW1, SW2, SW3, SWP, AVG, MEP, BKP,<br>TTL, OVP, INI, SV1, SV2, SV3, SV4, SV5, DLM, MA4, TRM,<br>GTM, PHO, FI1, FO1, FI2, FO2, FI3, FO3, FI4, FO4, FI5, FO5 |
| ■ System functions                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Maximum value                             | MAX(M, P0, P1, N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum value                             | MIN(M, P0, P1, N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • Specified measurement value frequency 1 | BNDL(M, P0, L, N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • Specified measurement value frequency 2 | BNDH(M, P0, L, N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • Specified measurement value frequency 3 | MEAS(M, P0, L, N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • Ripple 1                                | RPL1(P0, P1, N[, R])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • Ripple 2                                | RPL2(P0, P1, N[, R])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • Ripple 3                                | RPL3(P0, P1, N[, R])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • Ripple 4                                | RPL4(P0, P1, N[, R])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • Polling 1                               | POLL(M, P0, L, N[, R])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • Polling 2                               | POLH(M, P0, L, N[, R])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • Peak value                              | PLRH(M, P0, N[, R])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • Trough value                            | PLRL(M, P0, N[, R])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • Filter 1                                | FILTER1(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • Filter 2                                | FILTER2(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • Filter 3                                | FILTER3(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • Filter 4                                | FILTER4(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • Filter 5                                | FILTER5(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| • Group delay                             | GPDLY(P0, P1, CH[, E])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • Reading the status byte                 | GST(M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
#### 1.2 PTL Provided in the PTA

| Pin | Nama                     | Specification               | System        |
|-----|--------------------------|-----------------------------|---------------|
| No. | Name                     | Specification               | variable name |
| 1   | GND                      |                             |               |
| 2   | INPUT 1                  | TTL level, negative logic   | EX0           |
| 3   | OUTPUT 1                 | TTL level, negative logic   | EX0           |
| 4   | OUTPUT 2                 | TTL level, negative logic   | EX0           |
| 5   | Output port A0           | TTL level, negative logic   | IOA           |
| 6   | Output port A1           | TTL level, negative logic   | IOA           |
| 7   | Output port A2           | TTL level, negative logic   | IOA           |
| 8   | Output port A3           | TTL level, negative logic   | IOA           |
| 9   | Output port A4           | TTL level, negative logic   | IOA           |
| 10  | Output port A5           | TTL level, negative logic   | IOA           |
| 11  | Output port A6           | TTL level, negative logic   | IOA           |
| 12  | Output port A7           | TTL level, negative logic   | IOA           |
| 13  | Output port B0           | TTL level, negative logic   | IOB           |
| 14  | Output port B1           | TTL level, negative logic   | IOB           |
| 15  | Output port B2           | TTL level, negative logic   | IOB           |
| 16  | Output port B3           | TTL level, negative logic   | IOB           |
| 17  | Output port B4           | TTL level, negative logic   | IOB           |
| 18  | Output port B5           | TTL level, negative logic   | IOB           |
| 19  | Output port B6           | TTL level, negative logic   | IOB           |
| 20  | Output port B7           | TFL level, negative logic   | IOB           |
| 21  | Input/Output port C0     | TTL level, negative logic   | IOC           |
| 22  | Input/Output port C1     | TTL level, negative logic   | IOC           |
| 23  | Input/Output port C2     | TTL level, negative logic   | IOC           |
| 24  | Input/Output port C3     | TTL level, negative logic   | IOC           |
| 25  | Input/Output port D0     | TTL level, negative logic   | IOD           |
| 26  | Input/Output port D1     | TTL level, negative logic   | IOD           |
| 27  | Input/Output port D2     | TTL level, negative logic   | IOD           |
| 28  | Input/Output port D3     | TTL level, negative logic   | IOD           |
| 29  | Port C status            | TTL level, 0/1:Input/Output | EIO           |
| 30  | Port D status            | TTL level, 0/1:Input/Output | EIO           |
| 31  | Write strobe signal (*1) | TTL level, negative logic   |               |
| 32  | Interrupt signal (*2)    | TTL level, negative logic   |               |
| 33  | NC                       |                             |               |
| 34  | +5V output               | Max. 100 mA                 |               |
| 35  | NC                       |                             |               |
| 36  | NC                       |                             |               |

#### PTA Parallel I/O Port Connectors (RC30-36R: Manufactured by Hirose Electric Co., Ltd.)

- 1. This signal is output when the IOC=... or IOD=... statements are executed.
- 2. The execution for the interrupt will be performed by the I/O interrupt statements ON IO GOTO … and ON IO GOSUB …

Section 1 Outline

### CAUTION $\triangle$

For details of system variables, see CHAPTER 9, "CONTROLLING THE PTA PARALLEL PORT".

The name of the above connector is RC30-36R manufactured by Hirose Electric Co., Ltd. Have handy also the RC-30P manufactured by Hirose Electric Co., Ltd. as this is the connector to be engaged to RC30-36R.

#### 1.3 External interfaces

### 1.3 External interfaces

This measuring device comes standard with the GPIB interface and the PTA parallel I/O port interface. The RS-232C/ Centronics (printer) interface can be optionally added (option 02). These interfaces are used in different ways depending on the settings of the connection ports.

### 1.3.1 GPIB Interface

- If "Control Function" in the GPIB setting condition of this device is set to "DEVICE": The GPIB interface will act as a device port, to which the host computer or other control unit for this device can be connected.
- If "Control Function" in the GPIB setting condition of this device is set to "CONTROLLER": The GPIB interface will act as a system controller port. Execute the COPY command from the PTA to print a screen copy on the printer. You can also control the external devices from the PTA.

### 1.3.2 RS-232C Interface

- If "Control Function" in the RS-232C setting condition of this device is set to "DEVICE": The host computer or other control unit for this device can be connected to the RS-232C interface.
- If "Control Function" in the RS-232C setting condition of this device is set to "CONTROLLER": Execute the COPY command from the PTA to print a screen copy on the printer.

The serial data transfer can be performed between the PTA and the external devices.

### 1.3.3 Parallel (Centronics) Interface

Execute the COPY command from the PTA to print a screen copy on the printer.

### 1.3.4 PTA Parallel I/O Interface

Use this interface to control the devices not having a GPIB or RS-232C interface or the devices not provided with a special protocol or handshake for data transfers.

Using a PTA statement will facilitate controlling the external devices.

- Only one of the GPIB and the RS-232C interfaces can be set as a device port.
- Both the GPIB and the RS-232C interfaces can be set as a controller port.
- To print a hard copy or control an external device through the GPIB, RS-232C, or parallel (Centronics) interface, you must select which of the interface ports the data should be output through. Make the selection in a window called up from the GPIB, RS-232C, or HARD COPY menu of this device, or using the GPIB command "PORTn". The selected interface port will be called an active port. An active port is enabled only if the interface is set as a controller port. The parallel (Centronics) interface is always used as a controller port.

Section 1 Outline

### 1.4 Structure of Screens of the Measuring Device

Section 1.4 describes the screen specification of this device.

#### 1.4.1 Physical Structure of Screens



#### Note:

For information on what is displayed on each screen, see the chapter on screen subroutines (CALL CFL).



1.4 Structure of Screens of the Measuring Device

### 1.4.2 Display Coordinates of Measurement Screen

Section 1 Outline

# Section 2 Operating the PTA

| 2.1 | Operation Overview |                                                 |      |  |
|-----|--------------------|-------------------------------------------------|------|--|
| 2.2 | Starting the PTA   |                                                 |      |  |
| 2.3 | Panel Operation    |                                                 |      |  |
|     | 2.3.1              | Soft Keys                                       | 2-3  |  |
|     | 2.3.2              | Entering, Executing and Stopping the Program    | 2-4  |  |
|     | 2.3.3              | Data Input Keys                                 | 2-5  |  |
|     | 2.3.4              | Other Panel Key Operations                      | 2-5  |  |
| 2.4 | Termi              | Terminating the PTA                             |      |  |
| 2.5 | Extern             | al Keyboard                                     | 2-7  |  |
|     | 2.5.1              | Connecting an External Keyboard                 | 2-7  |  |
|     | 2.5.2              | Description of an External Keyboard             | 2-7  |  |
| 2.6 | Handli             | ing Storage Media (Internal memory, FD and PMC) | 2-11 |  |
|     | 2.6.1              | Formatting a Medium                             | 2-11 |  |
|     | 2.6.2              | Creating a Directory                            | 2-11 |  |
|     | 2.6.3              | Exchanging the media for MS3401*                | 2-11 |  |

Section 2 Operating the PTA

### 2.1 Operation Overview

In the PTA, an external keyboard is used to enter, edit and execute a program. In addition, the front panel of this device or the GPIB can be used to input and execute a program.

### 2.2 Starting the PTA

Press the [PTA] key on the front panel of this device to turn on the PTA.



Then, the display screen will be cleared and the cursor will appear at the HOME position (upper left corner of the screen). Press the soft keys [F1] to [F6] to display the corresponding PTA menus.



- Pressing [F5] PTF OFF will not delete the PTA program from the memory. By pressing the [PTA] key again to turn on the PTA, you can use the program immediately.
- Loading a new program after turning on the PTA will delete the previous program.
- To load a program without deleting the previous program but executing overwrite, execute the OVERLAY command and then load the program.
- Turning off the power of this device will delete the PTA program in the memory.

#### 2.3 Panel Operation

### 2.3 Panel Operation

### 2.3.1 Soft Keys

After the PTA is turned on, pressing the [F6] "etc." soft key to display soft key menus in turns.

|                                            | _                                    |                                                                                                                                                                                                                                                                                          |
|--------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PTA<br>(2/4)                               |                                      |                                                                                                                                                                                                                                                                                          |
| PROG LIST                                  | F1                                   | <br>Displays the list of PTA file names stored in the storage device (internal memory, FD or PMC).                                                                                                                                                                                       |
| CURSOR UP                                  | F2                                   | <br>Moves up the cursor.                                                                                                                                                                                                                                                                 |
| CURSOR DWN                                 | <b>F3</b>                            | <br>Moves down the cursor.                                                                                                                                                                                                                                                               |
| LOAD                                       | F4                                   | <br>Loads the program with the file name indicated in the cursor line.                                                                                                                                                                                                                   |
| RUN                                        | <b>F</b> 5                           | <br>Starts executing a program.                                                                                                                                                                                                                                                          |
| etc.                                       | <b>F6</b>                            | <br>Selects the next PTA menu.                                                                                                                                                                                                                                                           |
|                                            |                                      |                                                                                                                                                                                                                                                                                          |
| Ŷ                                          |                                      |                                                                                                                                                                                                                                                                                          |
| PTA<br>(3/4)                               |                                      |                                                                                                                                                                                                                                                                                          |
| PTA<br>(3/4)<br>F1                         | <b>F1</b> †                          | <br>A system switch that can be read in the PTA program.                                                                                                                                                                                                                                 |
| PTA<br>(3/4)<br>F1<br>F2                   | F1 †<br>F2 †                         | <br>A system switch that can be read in the PTA program.<br>A system switch that can be read in the PTA program.                                                                                                                                                                         |
| PTA<br>(3/4)<br>F1<br>F2<br>F3             | F1 †<br>F2 †<br>F3 †                 | <br>A system switch that can be read in the PTA program.<br>A system switch that can be read in the PTA program.<br>A system switch that can be read in the PTA program.                                                                                                                 |
| PTA<br>(3/4)<br>F1<br>F2<br>F3<br>F4       | F1 †<br>F2 †<br>F3 †<br>F4 †         | <br>A system switch that can be read in the PTA program.<br>A system switch that can be read in the PTA program.<br>A system switch that can be read in the PTA program.<br>A system switch that can be read in the PTA program.                                                         |
| PTA<br>(3/4)<br>F1<br>F2<br>F3<br>F4<br>F5 | F1 †<br>F2 †<br>F3 †<br>F4 †<br>F5 † | <br>A system switch that can be read in the PTA program.<br>A system switch that can be read in the PTA program.<br>A system switch that can be read in the PTA program.<br>A system switch that can be read in the PTA program.<br>A system switch that can be read in the PTA program. |

<sup>†</sup> Use the DEF subroutine to define the displayed characters.

#### Section 2 Operating the PTA



### 2.3.2 Entering, Executing and Stopping the Program

The program entered and edited using the external keyboard can be saved into the storage device (internal memory, FD or PMC). The following section shows the procedures for loading and executing, through the front panel operations, the program saved in the storage device.

- (1) Display, in the list format, the names of the programs in the storage device by pressing the [F1] PROG LIST key. If you have just finished pressing the [PTA] key, press [F6] etc once instead to display PROG LIST for [F1] of the soft key, before starting the operations.
- (2) Press the [F2] CURSOR UP or [F3] CURSOR DWN key to move the cursor to the name of program to be loaded.
- (3) Press the [F4] LOAD key to load the program.
- (4) Press the [F5] RUN key to start executing the program.

(5) Press the [F5] RESET key to stop executing the program.

Select the storage device (internal memory, FD or PMC) in the "DRIVE" menu called up by pressing the SAVE/RECALL key of the main frame function.

#### 2.3.3 Data Input Keys

Use the soft and numeric keys as data input keys.

#### (1) [F1]F1, [F2]F2, [F3]F3, [F4]F4, and [F5]F5 keys

These keys can be referenced on the program and correspond to the system variables EX1, EX2, EX3, EX4 and EX5, respectively. Pressing a key will change the variable data to 0 and 1 each time. In the initial or reset state, all the variables will be 0. Use the DEF subroutine to define the label names for the menu (F1 to F6).

#### Note:

For EX1, EX2, EX3, EX4 and EX5, see "System Variables" in CHAPTER 5.

#### (2) [F1]YES and [F2]NO keys

These keys are the input keys for the INPUT statement. Press these keys to enter the YES and NO strings immediately.

#### (3) Numeric keys

The numeric keys for ENTRY are the input keys for the INPUT statement.

Use the [0], [1], [2], [3], [4], [5], [6], [7], [8], [9], and  $[\cdot]$  keys to enter a numeric. Use the [+/-] or [MHz] key to enter a minus symbol (–) and the [KHz] key to enter a comma (,). To correct an entered numeric, delete the characters using the [BS] key and re-input a correct numeric. To end the input, press the [ENTER] key.

#### 2.3.4 Other Panel Key Operations

When the PTA is turned on, all the panel keys are locked except for the [PTA], [Local], numeric/[MHz]/[kHz]/[BS]/ [ENTER], [ $\land$ ], [ $\lor$ ], [<], [>] keys and the [F1] to [F6] soft keys. To use the front panel keys to define the parameters of this device while the PTA is on (including when a program is executed), execute CALL PNLU (0) to unlock all the panel keys. (See the section on PNLU subroutines). Section 2 Operating the PTA

### 2.4 Terminating the PTA

To terminate the PTA, first press the [RESET] soft key to stop the execution of a program, and then press the [PTA OFF] key. The screen displayed by the display subroutine will be cleared and the normal measurement screen will be displayed.

#### Note:

For the display subroutine, see "System Subroutines" in CHAPTER 5.

### **Precaution during PTA program execution**

The device uses the same micro processor to execute the PTA program as well as execute measurements and control the sweep. Therefore, it is disabled to execute the PTA program as well as execute measurements and control the sweep at the same time. Moreover, the priority of the job execution is set as follows; execution of sweep < execution of the PTA program < execution of setup such as the measuring conditions. When a job of higher priority is being executed, execution of other jobs of lower priority must queue.

For example, when the PTA program is being executed, execution of regular sweeping must queue. However, execution of the PTA program is temporarily paused when PTA has sent a command to execute sweep and is now waiting for the response for execution completion, or when the waiting statement (WAIT) is being executed. In this case, sweeping is executed. When PTA is executing statements other than the one mentioned above, execution of sweeping must generally queue.

### 2.5 External Keyboard

Use an external keyboard to enter, edit and execute a program.

### 2.5.1 Connecting an External Keyboard

Connect an external keyboard to 8-pin round DIN connector at [KEYBOARD] of the front panel of this device.

Before connecting or disconnecting a keyboard, turn off the power of this device.

### 2.5.2 Description of an External Keyboard

Figure 2-1 shows the key arrangement of an external keyboard.

| No. | Key            | Function description                                                                                                                                                                                                          |  |
|-----|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | F1 F2 F3 F4 F5 | Keys that can be referenced on the program and correspond to the system variables EX1, EX2, EX3, EX4 and EX5, respectively. Pressing a key                                                                                    |  |
|     |                | will change the variable data to 0 and 1 each time.                                                                                                                                                                           |  |
| 2   |                | Inputs a command, a program and data.                                                                                                                                                                                         |  |
| 3   | RUN            | Starts executing a program from the first line.                                                                                                                                                                               |  |
| 4   | SAVE           | Displays on screen the SAVE character string of the save command.                                                                                                                                                             |  |
| 5   | LOAD           | Displays on screen the LOAD character string of the load command.                                                                                                                                                             |  |
| 6   | PLIST          | Displays on screen the file name and size stored in the storage device (internal memory, FD or PMC).                                                                                                                          |  |
| 7   | STOP           | Suspends executing a program but does not initialize the variables.                                                                                                                                                           |  |
| 8   | RESET          | Stops executing a program and initializes the variables.                                                                                                                                                                      |  |
| 9   |                | Displays on screen the DELETE character string of the delete command (for deleting a program).                                                                                                                                |  |
| 10  |                | Changes the cursor to $\blacktriangleleft$ (insert cursor) and inserts a character, numeric, or special symbol at the insert cursor when they are pressed. Press the INS key again to change the cursor back to a normal one. |  |
| 11  | RENUM          | Displays on screen the RENUM character string of the renumber command (for sorting programs).                                                                                                                                 |  |

#### Section 2 Operating the PTA

| No. | Кеу           | Function description                                                                                                                                                                                                                                                                                                         |  |
|-----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 12  | DEL           | Deletes a character at the cursor position.                                                                                                                                                                                                                                                                                  |  |
| 13  | LIST          | Displays on screen the LIST character string of the list command.                                                                                                                                                                                                                                                            |  |
| 14  |               | Ends entering a command, or one line of a program or data.                                                                                                                                                                                                                                                                   |  |
| 15  |               | Moves the cursor up and down and to the right and left. Pressing the SHIFT and arrow keys will move the cursor to the edge of screen.                                                                                                                                                                                        |  |
| 16  | SHIFT         | With the [SHIFT] key down, press the character, numeric or special symbol key to input an upper-case alphabetical character (or lower-case alphabetical character if [CAP LOCK] is turned on) or a special symbol in the upper row.                                                                                          |  |
| 17  | PAGE SCROLL   | Displays on screen a program page by page.                                                                                                                                                                                                                                                                                   |  |
| 18  | BS            | Deletes a character just before the cursor.                                                                                                                                                                                                                                                                                  |  |
| 19  | (CAP<br>LOCK) | If [CAP LOCK] is on, the lamp will light up, and pressing a character key will input an upper-case alphabetical character. If [CAP LOCK] is pressed again and turned off, the lamp will go off, and pressing a character key will input a lower-case alphabetical character. Press this key only after the PTA is turned on. |  |
| 20  | HOME<br>ERASE | Clears the screen and displays the cursor at the home position (upper left corner of the screen).                                                                                                                                                                                                                            |  |
| 21  | ТАВ           | Inputs a fixed-length space.                                                                                                                                                                                                                                                                                                 |  |
| 22  | STEP          | Executes a program line by line.                                                                                                                                                                                                                                                                                             |  |
| 23  | CONT          | Restarts executing a suspended program.                                                                                                                                                                                                                                                                                      |  |

#### 2.5 External Keyboard



Section 2 Operating the PTA



Key Arrangement of an External Keyboard for ASCII, MC3306A

# 2.6 Handling Storage Media (internal memory, FD and PMC)

This device has standard internal memory and a 3.5" FD as the storage media. The plug-in memory card (PMC) is also optionally available.

#### 2.6.1 Formatting a Medium

A medium, when used for the first time, must be formatted (to the MS-DOS format). For this purpose, use the menu called up from the SAVE/RECALL key on the front panel. Specify a drive according to the medium to be formatted.

### 2.6.2 Creating a Directory

Execute the media formatting function. The medium will be formatted and the directories "MS4630" and "PTA" will be created under the root directory as follows:



#### (1) "MS4630" directory

Under this directory, the data files (waveform data, measurement conditions, calibration data, etc.) to be handled by SAVE/RECALL of the main frame function will be created.

#### (2) "PTA" directory

Under this directory, the PTA program files, PTA data files, and startup registration files to be handled by the PTA will be created.

Unless the "PTA" subdirectory exists, the PTA files such as the above cannot be saved.

#### 2.6.3 Exchanging the media for MS3401\*

The following shows the precautions for using the PMC formatted by the Anritsu's old-model network analyzer (hereafter, old PMC format).

- This device can read the PTA program files and data files saved in the old PMC format. <u>However, this device cannot</u> read the data files saved by the main frame function (waveform data, measurement conditions, calibration data, etc.).
- This device cannot save the data in the PMC in the old PMC format.
- This device cannot use the startup function registered in the old PMC format.

Section 2 Operating the PTA

| 3.1  | PROGRAM INPUT COMMANDS                 | 3-3  |
|------|----------------------------------------|------|
| 3.2  | LINE NUMBER AUTOMATIC UPDATING COMMAND | 3-4  |
| 3.3  | PCOPY COMMAND                          | 3-5  |
| 3.4  | DELETE COMMAND                         | 3-6  |
| 3.5  | RENUM COMMAND                          | 3-7  |
| 3.6  | LIST COMMAND                           | 3-8  |
| 3.7  | LISTG COMMAND                          | 3-9  |
| 3.8  | SAVEG COMMAND                          | 3-10 |
| 3.9  | LOADG COMMAND                          | 3-11 |
| 3.10 | PAGE SCROLL COMMAND                    | 3-12 |
| 3.11 | ROLL UP/DOWN COMMANDS                  | 3-13 |
| 3.12 | PMEMO COMMAND                          | 3-14 |
| 3.13 | IMMEDIATE EXECUTION COMMAND            | 3-15 |
| 3.14 | RUN COMMAND                            | 3-16 |
| 3.15 | STOP COMMAND                           | 3-17 |
| 3.16 | CONT COMMAND                           | 3-18 |
| 3.17 | RESET COMMAND                          | 3-19 |
| 3.18 | SAVE COMMAND                           | 3-20 |
| 3.19 | LOAD COMMAND                           | 3-21 |
| 3.20 | OVERLAY COMMAND                        | 3-22 |
| 3.21 | PDEL COMMAND                           | 3-23 |
| 3.22 | PLIST COMMAND                          | 3-24 |
| 3.23 | STARTP COMMAND                         | 3-25 |
| 3.24 | CANCEL COMMAND                         | 3-26 |

The Personal Test Language (PTL) commands consist of those for editing and executing a PTA program and managing a file as follows:



#### 3.1 PROGRAM INPUT COMMAND

### 3.1 PROGRAM INPUT COMMANDS

#### (1) Function

A statement entered with a line number is stored in the program area as a PTA program. A statement with a different line number than those already entered will be added or inserted to the entered ones. A statement with the same number as one of those already entered will be overwritten over the entered one.

#### (2) Format

Line number statement

Integer constant between 1 and 65535 inclusive

#### Note:

If you input more than 110 characters per line including a line number and execute the RENUM command, executing the LIST command thereafter may not display this program line. For the RENUM command, see "RENUM Command" in CHAPTER 3.

### 3.2 LINE NUMBER AUTOMATIC UPDATING COMMAND

(1) Function

The AUTO command automatically displays and updates line numbers.

If this command is executed, the system will display the specified <Start line number> and waits for the statement input. Thereafter, enter a statement and the RETURN key to store the statement into the program area. The line numbers will then be updated for the increment specified in <Increment>. If <Start line number> and <Increment> are omitted, 10 will be given as the default value.

Press the RESET key to terminate the AUTO command.

#### (2) Format

AUTO [Operand 1] [, Operand 2]

Start line number Increment

| 1. | AUTO        | Updates the line numbers every 10 steps from the 10th line. |
|----|-------------|-------------------------------------------------------------|
| 2. | AUTO 100    | Updates the line numbers every 10 steps from the 100th line |
| 3. | AUTO, 1     | Updates the line numbers every step from the 10th line.     |
| 4. | AUTO 1ØØ, 5 | Updates the line numbers every 5 steps from the 100th line. |

#### Note:

If, while entering a program after defining the start line number and the increment, you rewrite an updated line number, the line numbers will be updated for the increment specified in <Increment>, starting from the rewritten line number.

### 3.3 PCOPY COMMAND

#### (1) Function

The PCOPY command copies a statement.

This command copies the portion between the specified <Source start line number> and <Source end line number> at <New start line number> using the increment specified in <Increment>. If <Increment> is omitted, 10 will be given as the default value.

#### (2) Format

| PC | OPY Operand 1, | [Operand 2], | Operand 3,        | Operand 4                      |                                   |
|----|----------------|--------------|-------------------|--------------------------------|-----------------------------------|
|    | New start      | Increment    | Source start      | Source end                     |                                   |
|    | line number    |              | line number       | line number                    |                                   |
| 1. | PCOPY 100,,10  | 0,30 Copie   | es the statements | from the 10th to 30th line ev  | ery 10 steps from the 100th line. |
| 2. | PCOPY 100,5,1  | ø, 3ø Copie  | es the statements | s from the 10th to 30th line e | very 5 steps from the 100th line. |
|    |                |              |                   |                                |                                   |

- If, while defining operands, the new line numbers of the statements to be copied repeat or overlap the line numbers of the existing statements, an error F101 will occur.
- If one line consists of more than 110 characters and PCOPY is executed, executing the LIST command thereafter may not display such a program line.

### 3.4 DELETE COMMAND

(1) Function

The DELETE command deletes a whole program or a part of a program.

(2) Format

DELETE [Operand 1] [,] [Operand 2]

Operand  $1 \leq \text{Operand } 2$ 

| 1. | DELETE          | Deletes all the lines of a program. Initializes the variable values. |
|----|-----------------|----------------------------------------------------------------------|
| 2. | delete 100      | Deletes the 100th line.                                              |
| 3. | DELETE 1ØØ,     | Deletes the portion from the 100th to the last line.                 |
| 4. | DELETE ,5ØØ     | Deletes the portion from the first to the 500th line.                |
| 5. | DELETE 100, 500 | Deletes the portion from the 100th to the 500th line.                |

• To delete one line with the specified line number (only), enter: Line number [RETURN]

### 3.5 RENUM COMMAND

#### (1) Function

The RENUM command sorts (renumbers) the line numbers of a program. If <Increment> and <New line number> are omitted, 10 will be given as the default value.

#### (2) Format

| RE | RENUM [Operand 1] [,] [Operand 2] [,] [Operand 3] [,] [Operand 4] |                                                                                                                        |  |  |  |
|----|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | New Start line number Increment Start line number End line number |                                                                                                                        |  |  |  |
| 1. | RENUM                                                             | Renumbers a whole program using the increment of 10 with the new start line number as 10.                              |  |  |  |
| 2. | RENUM 100                                                         | Renumbers a whole program using the increment of 10 with the new start line number as 100.                             |  |  |  |
| 3. | RENUM 100,5                                                       | Renumbers a whole program using the increment of 5 with the new start line number as 100.                              |  |  |  |
| 4. | RENUM 100,,50                                                     | Renumbers the portion from the 50th line using the increment of 10 with the new start line number as 100.              |  |  |  |
| 5. | RENUM 100,5,50                                                    | Renumbers the portion from the 50th line using the increment of 5 with the new start line number as 100.               |  |  |  |
| 6. | RENUM 100,,,150                                                   | Renumbers the portion from the 10th to the 150th line using the increment of 10 with the new start line number as 100. |  |  |  |
| 7. | RENUM 100,,5,150                                                  | Renumbers the portion from the 50th to the 150th line using the increment of 10 with the new start line number as 100. |  |  |  |
| 8. | RENUM 100,5,,150                                                  | Renumbers the portion from the 10th to the 150th line using the increment of 5 with the new start line number as 100.  |  |  |  |
| 9. | RENUM 100,5,50,150                                                | Renumbers the portion from the 50th to the 150th line using the increment of 5 with the new start line number as 100.  |  |  |  |

- A label can be used for Operands 1, 3, and 4.
- If Operand 1 is smaller than Operand 4 and a program with a smaller line number than Operand 4 exists, an error F101 will occur.
- If one line consists of more than 110 characters, executing RENUM may increase the number of digits of the line number, causing the program to extend over two lines or more. In this case, executing the LIST command will display this line and cause error F20.

### 3.6 LIST COMMAND

#### (1) Function

The LIST command outputs to the screen a whole program or a part of a program.

#### (2) Format

| L  | LIST [Operand 1] [,] [Operand 2] |                                                      |  |  |  |
|----|----------------------------------|------------------------------------------------------|--|--|--|
|    |                                  |                                                      |  |  |  |
|    | Output start                     | Output end                                           |  |  |  |
|    | line number                      | line number                                          |  |  |  |
|    | Operand1 $\leq$                  | Operand 2                                            |  |  |  |
| 1. | LIST                             | Outputs a whole program.                             |  |  |  |
| 2. | LIST 1ØØ                         | Outputs the 100th line.                              |  |  |  |
| 3. | LIST 1ØØ,                        | Outputs the portion from the 100th to the last line. |  |  |  |

- 4. LIST, 5ØØ Outputs the portion from the 1st to the 500th line.
- 5. LIST 100,500 Outputs the portion from the 100th to the 500th line.

#### Note:

A label can be used for Operands 1 and 2.

#### 3.7 LISTG COMMAND

### 3.7 LISTG COMMAND

(1) Function

The LISTG command outputs the PTA program to a printer connected to the GPIB/RS-232C/parallel (Centronics) interface of the specified port.

(2) Format

LISTG Address [ [,] [Operand 1] [,] [Operand 2] ]

Printer address between 0 and 30 inclusive

Use Operands 1 and 2 in the same way for the LIST command.

- This command is enabled only when the specified port is a controller port. For information on specifying the port, see CHAPTER 7, "EXTERNAL INTERFACE FOR THE PTA".
- You must specify an address as a matter of form although it is not significant if a program is output to the RS-232C or parallel (Centronics) interface.

### 3.8 SAVEG COMMAND

(1) Function

The SAVEG command transfers the PTA program on this device to another network analyzer connected to the GPIB/ RS-232C interface of the specified port.

(2) Format

SAVEG Address

0 to 30

- This command is enabled only when the specified port is a controller port. For information on specifying the port, see CHAPTER 7, "EXTERNAL INTERFACE FOR THE PTA".
- You must specify an address as a matter of form although it is not significant if a program is output to the RS-232C interface.
- The devices (network analyzers) that can execute a PTA program are MS3401\*, MS3606\* and this device.

#### 3.9 LOADG COMMAND

### 3.9 LOADG COMMAND

(1) Function

This command loads the PTA program from another network analyzer located on GPIB (RS-232C) on the specified port to the device.

(2) Format

LOADG Address

0 to 30

- This command is enabled only when the specified port is a controller port. For information on specifying the port, see CHAPTER 7, "EXTERNAL INTERFACE FOR THE PTA".
- You must specify an address as a matter of form although it is not significant if a program is output to the RS-232C interface.
- The devices (network analyzers) that can execute a PTA program are MS3401\* and MS3606\*.
- The MS3401\* and MS3606\* add a string "END" at the end of a program that they output. Since this device cannot interpret this string, an error will result. However, the transferred program remain unaffected.

### 3.10 PAGE SCROLL COMMAND

#### (1) Function

The PAGE SCROLL command displays a program page by page.

First use the LIST command to display a program. Execute the PAGE SCROLL command for the first time to stop LIST. Then, use the PAGE SCROLL repetitiously to display the program page by page until the last line.

(2) Format

PAGE SCROLL key

SHIFT + PAGE SCROLL keys

- Press the SHIFT and PAGE SCROLL keys to execute PAGE SCROLL in the reverse direction.
- The PAGE SCROLL command is enabled only if a program is already displayed using the LIST command.

### 3.11 ROLL UP/DOWN COMMANDS

(1) Function

The ROLL UP/DOWN commands scroll forward and backward the screen line by line if any program line is displayed using the LIST command.

(2) Format

 $\mathsf{CTRL} + \mathsf{J} \ \mathsf{keys} \ \rightarrow \ \mathsf{ROLL} \ \mathsf{UP}$ 

 $\mathsf{CTRL} + \mathsf{K} \; \mathsf{keys} \; \rightarrow \; \mathsf{ROLL} \; \mathsf{DOWN}$ 

#### Note:

This command is disabled while the AUTO command is executed, after the RUN command is executed, and when the screen is cleared after the HOME ERASE key is entered.

### 3.12 PMEMO COMMAND

(1) Function

This command outputs, on the screen, the size of memory used by the program area where the PTA program is stored as well as the size of memory required to store data into the storage device (internal memory, FD or PMC).

(2) Format

PMEMO

(3) Output

| 1. | Used memory size :   | ***bytes          |
|----|----------------------|-------------------|
| 2. | PTA program          | ***bytes          |
| 3. | LIB programs         | ***bytes          |
| 4. | Variables            | ***bytes          |
| 5. | Unused memory size : | ***bytes          |
| F  | ile size :           |                   |
| 6. | PTA program          | ***bytes (ASCII)  |
| 7. |                      | ***bytes (BINARY) |
| 8. | LIB programs         | ***bytes (BINARY) |

- 1: Used memory size in the PTA program memory
- 2: Program size in "1."
- 3: Not used in this system
- 4: Not used in this system
- 5: Unused memory size in the PTA program memory
- 6: File size (estimated value) required to save a PTA program on the storage device in the ASCII format
- 7: File size (estimated value) required to save a PTA program on the storage device in the binary format
- 8: Not used in this system, but secured for this fixed size.
- The file sizes shown in 6. and 7. are somewhat different from those after the files are saved.
- File sizes will be larger in the binary format than in the ASCII format. On the other hand, it will take less time to save or load a file in the binary format.

#### 3.13 IMMEDIATE EXECUTION COMMAND

### 3.13 IMMEDIATE EXECUTION COMMAND

(1) Function

Enter a statement without a line number and press the key to execute the statement immediately. However, you cannot immediately execute a statement that cannot be executed by itself, such as GOTO, GOSUB, RETURN, RETMAIN, IF, FOR, NEXT, DATA, RDATA, RESTORE, and CHAIN. For details of statements, see CHAPTER 4, "PTL".

(2) Format

Statement

### 3.14 RUN COMMAND

(1) Function

The RUN command starts executing a PTA program. The PTA program will be terminated if the STOP statement is executed, if an error occurs, or if RESET is executed.

#### (2) Format

[RUN] key

```
RUN [[Operand 1][, Operand 2]]
```

Start line number Suspend line number

| 1. RUN         | Starts executing a program from the beginning of a line.                       |
|----------------|--------------------------------------------------------------------------------|
| 2. RUN 100     | Starts executing a program from the 100th line.                                |
| 3. RUN ,500    | Starts executing a program from the first line and suspends at the 500th line. |
| 4. RUN 100,500 | Starts executing a program from the 100th line and suspends at the 500th line  |

#### Note:

Executing the RUN command will not initialize the variable values.

#### 3.15 STOP COMMAND

### 3.15 STOP COMMAND

(1) Function

The STOP command stops executing a PTA program being executed.

(2) Format

[STOP] key

### 3.16 CONT COMMAND

(1) Function

The CONT command restarts executing a PTA program being suspended. This command is enabled only if the program is suspended after the RUN or STEP command is executed.

#### (2) Format

[CONT] key CONT [Operand]

| 1. | CONT      | Restarts executing a program from the line after the one where it was |
|----|-----------|-----------------------------------------------------------------------|
|    |           | suspended.                                                            |
| 2. | CONT 1000 | Restarts executing a program from the line after the one where it was |

suspended, and suspends the execution at the 1,000th line.
# 3.17 RESET COMMAND

# 3.17 RESET COMMAND

# (1) Function

The REST command stops executing a command or a PTA program.

(2) Format

[REST] key

- (3) Initialization
  - Clears the system variables EX1, EX2, EX3, EX4 and EX5.
  - Clears the user-defined variables. Does not clear the system variables.
  - Initializes the PTA parallel I/O port.
  - Cancels the OVERLAY status (where a program can be loaded by overwriting).

# Section 3 PTL Commands

# 3.18 SAVE COMMAND

# (1) Function

The SAVE command saves a PTA program to the storage device (internal memory, FD or PMC). In this case, the file size of the PTA program must be smaller than the unused memory size of the storage device. Execute the PMEMO command to output to the screen the file size of a PTA program, and the PLIST command to output the unused memory size of the storage device.

# (2) Format

SAVE PTAprogram name [.Attribute] [, Operand 1] [, Operand 2]

PTA or IMG Start line number End line number

Alphanumeric string consisting of six characters or less starting with an upper-case alphabetic character

# Notes:

- A file that was opened using CALL OPNI or OPNO "% File name" will be closed.
- A label can be used for Operands 1 and 2.
- Check that the storage device is formatted before saving a program. An unused the storage device must be formatted before a program can be saved in it. The PTA program file will be created in the "PTA" subdirectory in the medium.
- The program will be saved as an ASCII file if PTA is specified for the attribute. The program will be saved as a binary file if IMG is specified for the attribute. Saving the program as a binary file will shorten the time required to load it. If the attribute is omitted, the program will be saved with .PTA automatically added.
- Select a storage device in the "DRIVE" menu called up by pressing the SAVE/RECALL key of the main frame panel.

# 3.19 LOAD COMMAND

# (1) Function

The LOAD command loads a PTA program from a storage device (internal memory, FD or PMC) to the program area in the main frame. If another PTA program is already stored in the program area, it will be replaced with the new one unless OVERLAY is executed.

(2) Format

LOAD **PTA** program name [.Attribute]

PTA or IMG

Alphanumeric string consisting of six characters or less starting with an alphanumeric character

# Notes:

- A file that was opened using CALL OPNI or OPNO "% File name" will be closed.
- If you execute RESET while loading a program, only a part of the program will be loaded.
- The program area (memory) of this device is not battery-backed. Turning off the power switch of this device will cause the content of the program area to be lost.
- Select a storage device drive in the "DRIVE" menu called up by pressing the SAVE/RECALL key of the main frame panel.

# Section 3 PTL Commands

# 3.20 OVERLAY COMMAND

(1) Function

The OVERLAY command specifies, when the LOAD command is executed, to overwrite a PTA program that existed before the load.

(2) Format

OVERLAY

# Note:

This specification continues to be valid until the RESET command is executed.

# 3.21 PDEL COMMAND

# (1) Function

The PDEL command deletes a PTA program from a storage device (internal memory, FD or PMC).

(2) Format

PDEL PTA program name [.Attribute]

PTA or IMG

# Notes:

- "% File name" (Data file) cannot be deleted using the PDEL command (see "OPNI, OPNO and FDEL Subroutines" in CHAPTER 5.)
- A file that was opened using CALL OPNI or OPNO "% File name" will be closed.
- If the attribute is omitted, PTA will be automatically added in the process.
- Select a storage device. drive in the "DRIVE" menu called up by pressing the SAVE/RECALL key of the main frame panel.

# Section 3 PTL Commands

# 3.22 PLIST COMMAND

(1) Function

The PLIST command displays the file names, used file sizes, and unused sizes of the files stored on a storage device (internal memory, FD or PMC).

(2) Format

[PLIST] key

(3) Output

The PLIST command displays the data by scrolling the screen page by page. If more files than can be displayed in one page are stored on an FD or a PMC, the data will be displayed as in "1." below and then scrolled page by page with repetitious executions of the PLIST command. If the files can be displayed in one page, the data will be displayed as in "2." below.

1. If other pages exist

|                         | bytes       | PROG (IMAGE) |
|-------------------------|-------------|--------------|
| %SDAT0.DAT              | 1024 bytes  | DATA         |
| %SDAT2.DAT              | 1024 bytes  | DATA         |
| ABCXYZ. PTA             | 15808 bytes | PROG (ASCII) |
|                         |             | continue     |
| If no other pages exist |             |              |
| BANDLH.PTA              | 18568 bytes | PROG (ASCII) |
| RPLLH.IMG               | 35786 bytes | PROG (IMAGE) |
| MAXMIN.PTA              | 27368 bytes | PROG (ASCII) |
| unused memory size:     | 89010 bytes |              |

unused memory size: The unused memory size (in bytes).

#### Note:

2.

Select a storage device (internal memory, FD or PMC) in the "DRIVE" menu called up by pressing the SAVE/ RECALL key of the main frame panel.

# CAUTION $\triangle$

- A file that was opened using CALL  $\begin{cases} OPNI \\ OPNO \end{cases}$  "% File name" will be closed.
- The PLIST command displays only the PTA program file created by PTA and data files created in the PTA. It will not display the waveform and measurement parameter files saved using the main frame function. The unused memory sizes may be smaller than expected because of these files.

# 3.23 STARTP COMMAND

# 3.23 STARTP COMMAND

# (1) Function

The STARTP command registers a startup function to turn on the PTA at power-on and loads and executes the specified PTA program.

This function registers the PTA program file located in the storage device.

#### (2) Format

STARTP Program name

- At power-on after this registration, the PTA will be turned on and the registered PTA program will be loaded and executed.
- This registration will create a special startup file named "MS4630.bat" in the storage device (not displayed using the PLIST command).
- Even after this registration, the startup function will not be executed if:
  - No storage medium is mounted in the selected drive at power-on.
  - No program having the registered PTA program name exists in the storage medium mounted in the selected drive.

#### Note:

Select a storage device drive in the "DRIVE" menu called up by pressing the SAVE/RECALL key of the main frame panel.

# Section 3 PTL Commands

# 3.24 CANCEL COMMAND

(1) Function

The CANCEL command cancels the registration of the startup function.

(2) Format

CANCEL : Canceling the registration of the PTA program file in the storage device

# Note:

Select a storage device drive in the "DRIVE" menu called up by pressing the SAVE/RECALL key of the main frame panel.

The Personal Test Language (PTL) is similar to the BASIC language and consists of basic statements and extended PTL such as system variables, system subroutines, and GPIB statements.

| 4.1 | Compo   | onents of A Statement                             | 4-3  |
|-----|---------|---------------------------------------------------|------|
|     | 4.1.1   | Line Number                                       | 4-3  |
|     | 4.1.2   | Constants                                         | 4-3  |
|     | 4.1.3   | Variables                                         | 4-4  |
|     | 4.1.4   | Multiple Statements                               | 4-5  |
|     | 4.1.5   | Functions                                         | 4-6  |
|     | 4.1.6   | Arithmetic Operators                              | 4-10 |
|     | 4.1.7   | Relational Operators                              | 4-11 |
|     | 4.1.8   | Connecting Character Strings (Operator "+")       | 4-12 |
|     | 4.1.9   | Data format                                       | 4-13 |
|     | 4.1.10  | Label                                             | 4-14 |
| 4.2 | Basic S | Statements                                        | 4-15 |
|     | 4.2.1   | Remark (REM Statement)                            | 4-15 |
|     | 4.2.2   | Array Declaration (DIM Statement)                 | 4-16 |
|     | 4.2.3   | Initialization (CLEAR Statement)                  | 4-17 |
|     | 4.2.4   | Assignment (LET Statement)                        | 4-17 |
|     | 4.2.5   | Branch (GOTO Statement)                           | 4-18 |
|     | 4.2.6   | Terminating Execution (STOP Statement)            | 4-18 |
|     | 4.2.7   | Branch to a Subroutine (GOSUB Statement)          | 4-18 |
|     | 4.2.8   | Returning from a Subroutine to a Main Routine     |      |
|     |         | (RETMAIN Statement)                               | 4-19 |
|     | 4.2.9   | Returning from a Subroutine (RETURN Statement)    | 4-19 |
|     | 4.2.10  | Decision (IF Statement)                           | 4-19 |
|     | 4.2.11  | Starting Iteration (FOR Statement)                | 4-20 |
|     | 4.2.12  | Terminating Iteration (NEXT Statement)            | 4-21 |
|     | 4.2.13  | Key Input (INPUT Statement)                       | 4-21 |
|     | 4.2.14  | Display (PRINT Statement)                         | 4-22 |
|     | 4.2.15  | Reverse Display (PRINTR Statement)                | 4-26 |
|     | 4.2.16  | Specifying the Cursor Location (LOCATE Statement) | 4-26 |
|     | 4.2.17  | Data Statement (DATA Statement)                   | 4-26 |
|     | 4.2.18  | Reading Data (RDATA Statement)                    | 4-27 |
|     | 4.2.19  | Specifying the Data Statement to Be Read          |      |
|     |         | (RESTORE Statement)                               | 4-27 |
|     | 4.2.20  | Defining the Measurement Parameters               |      |
|     |         | (PUT and WRITE 1000 Statements)                   | 4-28 |
|     |         |                                                   |      |

| 4.2.21 | Reading the Measurement Parameters and Data    |      |
|--------|------------------------------------------------|------|
|        | (GET, COM and READ 1000 Statements)            | 4-29 |
| 4.2.22 | Loading and Executing the Program              |      |
|        | (CHAIN Statement)                              | 4-31 |
| 4.2.23 | ENABLE EVENT Statement                         | 4-31 |
| 4.2.24 | DISABLE EVENT Statement                        | 4-33 |
| 4.2.25 | ON EVENT Statement                             | 4-33 |
| 4.2.26 | RETINT Statement                               | 4-34 |
| 4.2.27 | IOEN Statement                                 | 4-34 |
| 4.2.28 | IODI Statement                                 | 4-34 |
| 4.2.29 | IOMA Statement                                 | 4-34 |
| 4.2.30 | ON IO GOTO and ON IO GOSUB Statements          | 4-35 |
| 4.2.31 | Specifying the Character Size                  |      |
|        | (DCHSIZE Statement)                            | 4-35 |
| 4.2.32 | Home Position (HOME Statement)                 | 4-35 |
| 4.2.33 | Erasing (ERASE Statement)                      | 4-36 |
| 4.2.34 | Waiting (WAIT Statement)                       | 4-36 |
| 4.2.35 | Subroutine (CALL Statement)                    | 4-36 |
| 4.2.36 | ON ERROR Statement                             | 4-37 |
| 4.2.37 | OFF ERROR Statement                            | 4-37 |
| 4.2.38 | RETERR Statement                               | 4-37 |
| 4.2.39 | RETRY Statement                                | 4-38 |
| 4.2.40 | RESUME Statement                               | 4-38 |
| 4.2.41 | GIVEUP Statement                               | 4-39 |
| 4.2.42 | Error Branch (ERROR Statement)                 | 4-39 |
| 4.2.43 | Error Main (ERRMAIN Statement)                 | 4-39 |
| 4.2.44 | Data Input 1 (READ Statement)                  | 4-40 |
| 4.2.45 | Data Input 2 (BREAD Statement)                 | 4-40 |
| 4.2.46 | Data Input 3 (WREAD Statement)                 | 4-40 |
| 4.2.47 | Data Output 1 (WRITE Statement)                | 4-40 |
| 4.2.48 | Data Output 2 (BWRITE Statement)               | 4-41 |
| 4.2.49 | Data Output 3 (WWRITE Statement)               | 4-41 |
| 4.2.50 | Writing Data to Dual Port Memory               |      |
|        | (WDPM Statement)                               | 4-42 |
| 4.2.51 | Reading Data to Dual Port Memory               |      |
|        | (RDPM Statement)                               | 4-42 |
| 4.2.52 | SOS (SOS)                                      | 4-43 |
| 4.2.53 | Switching the Write Strobe Signal from the PTA |      |
|        | Parallel I/O Port (OLDPORT Statement)          | 4-43 |
| 4.2.54 | Defining the Pseudo-Random Number              |      |
|        | (RNDMIZE Statement)                            | 4-44 |

# 4.1 Components of A Statement

# 4.1 Components of A Statement

# 4.1.1 Line Number

(1) Function

A line number is written before a statement and used as an index when the program is executed.

(2) Format

Numeric string

Integer constant between 1 and 65535 inclusive

# 4.1.2 Constants

# (1) Function

A constant represents a specific numeric, character string or bit string.

# (2) Format

(a) Numeric constant

[-]



(A mantissa is max. 15 digits. An exponent is between  $10^{308}$  and  $10^{-307}$  inclusive.) To an integer numeric variable, assign a numeric constant between -32768 to +32767 inclusive.

(b) Character constant

"Character string"

1 to 255 characters, enclosed between " and "

# Note:

When entering a program, one line will consist of max. two lines on the screen, and you can only enter as many characters as can be entered in this range.

# (c) Bit constant

- Hexadecimal constant
   <u>Hexadecimal notation</u>
   0 to FF
- Binary constant
   <u>Binary notation</u>

```
0 to 11111111
```

| (3) | Exa | ample                                                 |
|-----|-----|-------------------------------------------------------|
|     | (a) | Numeric constant                                      |
|     |     | 1                                                     |
|     |     | -12.3                                                 |
|     |     | 13E3 Same as 12000                                    |
|     |     | -Ø.12E-3 Same as -0.00012                             |
|     | (b) | Character constant<br>"Who are you?"                  |
|     | (c) | Bit constant                                          |
|     |     | \$F Same as #1111 (binary) or 15 (decimal).           |
|     |     | #ØØØ11Ø1Ø Same as \$1A (hexadecimal) or 26 (decimal). |
|     |     |                                                       |

# 4.1.3 Variables

The variables consist of simple, array and system variables. For the system variables, see "System Variables" in CHAP-TER 5.

(1) Simple variables

Simple variables consist of numeric, character string and bit string variables that have a variable name of 8 characters or less (including %, \$ and #) starting with an upper-case alphabetical character.

- Real number numeric variable name : Upper-case alphabetical character [Alphanumeric [Alphanumeric]] ABCD0123
- Integer numeric variable name
   : Upper-case alphabetical character [Alphanumeric [Alphanumeric]]% A%
- Character string variable name
   : Upper-case alphabetical character [Alphanumeric [Alphanumeric]]\$
   ABC\$

# (2) Array variables

Array variables are variables declared as an array in the DIM statement. Some system variables are handled as array variables. The following shows the format of an array variable.

• Array variable : Variable (Numeric constant or numeric variable)

---Range of a subscript ---For a numeric array variable 0 to 1023 --For a character array variable 0 to 254 --For a bit array variable 0 to 7

## 4.1 Components of A Statement

# CAUTION A

- A subscript in an array variable is between 0 and the array size minus one inclusive.
- If a subscript is a real number in an array variable, the fractional part of the subscript will be rounded off.
- Max. 256 variables (excluding system variables) can be used.
- An already registered symbol such as a command, statement, function or system variable cannot be used as a user-defined variable.

# 4.1.4 Multiple Statements

Using "&" between statements, you can enter multiple statements in the same line. You can also enter a program over two lines. You can enter any number of statements as long as they fit within two lines.

Example: 10 FOR I=0 TO 10 & A=I\*I & PRINT A & NEXT I 20 STOP

# 4.1.5 Functions

The PTL functions consist of basic functions (i.e. arithmetic, bool, statistical, and character string functions) and other dedicated functions.

The following shows the basic functions.

# (1) Arithmetic functions

| Function name                 | Function        | Paramete                                                                     | er                             |
|-------------------------------|-----------------|------------------------------------------------------------------------------|--------------------------------|
| Sine                          | SIN (X)         | V is in degrees                                                              | X: Numeric constant            |
| Cosine                        | COS (X)         | A is in degrees.                                                             | or variable.                   |
| Tangent                       | TAN (X)         | $X \neq 90(2n+1), n = Any integer$                                           |                                |
| Arc sine                      | ASN (X)         | $ \mathbf{V}  < 1$                                                           |                                |
| Arc cosine                    | ACS (X)         | $ \mathbf{X}  \leq 1$                                                        |                                |
| Arc tangent                   | ATN (X)         |                                                                              |                                |
| Natural logarithm             | LN (X)          | $\mathbf{V} > 0$                                                             |                                |
| Common logarithm              | LOG (X)         | X > 0                                                                        |                                |
| Exponent                      | EXP (X)         |                                                                              |                                |
| Square root                   | SQR (X)         | $X \ge 0$                                                                    |                                |
| Absolute value                | ABS (X)         |                                                                              |                                |
|                               |                 | If $X > 0$ , SGIN(X) = 1                                                     |                                |
| Sign                          | SGN (X)         | If $X < 0$ , SGIN(X) = $-1$                                                  |                                |
|                               |                 | If $X = 0$ , SGIN(X) = 0                                                     |                                |
| Integer value                 | INT (X)         | X : Numeric constant variable (An integer not exceeding X will be returned.) |                                |
|                               |                 | X : Numeric constant variable                                                |                                |
| Rounding off                  | ROUND (X [,N] ) | N: Numeric constant variable (If                                             | f omitted, N=0)                |
|                               |                 | (X will be rounded off to the N-th                                           | h decimal place.)              |
|                               |                 | Q: Numeric variable the quoti                                                | ent will be stored.            |
| Function to obtain a quo-     |                 | R : Numeric variable the rema                                                | inder will be stored.          |
| tient and a remainder         | Q=DIV (R,S,D)   | S : Integer variable the dividend will be stored.                            |                                |
|                               |                 | D: Integer variable the divisor                                              | r will be stored.              |
| Function to obtain the inte-  |                 | I : Integer variable the integer                                             | r part will be stored.         |
| ger and fractional parts from | I=FIX (S,D)     | S : Real number variable the origin                                          | al real number will be stored. |
| a real number value.          |                 | D : Real number variable the frac                                            | tional part will be stored.    |

# (2) Boolean functions

| Function name         | Function  | Parameter                                                    |
|-----------------------|-----------|--------------------------------------------------------------|
| Logical opposite      | NOT (X)   |                                                              |
| Logical product       | AND (X,Y) | X and Y is a bit or integer constant, variable and hexadeci- |
| Logical sum           | OR (X,Y)  | mal constant.                                                |
| Exclusive logical sum | EOR (X,Y) |                                                              |

# 4.1 Components of A Statement

#### (3) Statistical functions

| Function name                                 | Function                  | Parameter                                                  |
|-----------------------------------------------|---------------------------|------------------------------------------------------------|
| Function to obtain the maximum value          | MX=max (S)                | S: Variable with the one-dimensional array definition      |
| Function to obtain the minimum value          | MN=min (S)                | MX: The maximum value will be stored.                      |
| Function to obtain the sum value              | SM=sum (S)                | MN: The minimum value will be stored.                      |
| Function to obtain the mean value             | MS=mean (S)               | SM: The sum value will be stored.                          |
| Function to obtain the variance value         | VR=var (S)                | MS: The mean value will be stored.                         |
|                                               |                           | VR: The variance value will be stored.                     |
| Function to obtain all the values shown above | VR=sta(S,MX,MN,<br>SM,MS) | Variance = $\frac{\sum (x-x)^2}{\text{Number of samples}}$ |

# 

• On the left side are the numeric variables in which the obtained values can be stored.

The parameter S, if defined in one dimension, will be valid even with only one component. To specify all the components on which to perform the statistical processing, no subscript is required while being entered. If a subscript is added, only that component will be processed.

- In this device, a floating-point numeric processor performs all the function calculations and other operations. The result of these calculations and operations may have errors due to borrows and rounding errors.
- (4) Character string function
  - (a) Character string function that converts a numeric to a character (string) or vice versa
  - 1. ASC (character constant variable)

Gives a character code of the first character in the character string.

2. CHR\$ (constant variable)

Gives a character having the character code of the parameter value. Gives the character itself if it is a character type. Specify a parameter between 0 and 225 inclusive.

3. STRING\$ (constant variable, character constant variable, or numeric constant variable)

Gives characters having the character code of the first or numeric in a character string specified in the second parameter. Gives as many such characters as specified in the first parameter (between 0 and 255 inclusive). See CHR ( ).

4. HEX\$ (Numeric constant variable 1[, Numeric constant variable 2])

Gives a numeric in decimal in the first parameter as a character string in hexadecimal having the number of digits in the second parameter.

If the value in the first parameter exceeds the range between  $-2^{31}$  and  $2^{32} - 1$  inclusive, an error will occur. If the specification of the second parameter exceeds 8 digits, an error will occur. If omitted, the character string will be variable length.

5. OCT\$ (Constant variable)

Gives the parameter value as a character string in octal. If the value exceeds the range between -32768 and 32767, an error will occur.

#### 6. BIN\$ (Numeric constant variable 1 [, Numeric constant variable 2])

Gives a numeric in decimal in the first parameter as a character string in binary having the number of digits in the second parameter.

If the value in the first parameter exceeds the range between  $-2^{31}$  and  $2^{32} - 1$  inclusive, an error will occur. If the specification of the second parameter exceeds 32 digits, an error will occur. If omitted, the character string will be variable length.

#### 7. CVI (Character constant variable of two characters or more)

Gives a character string converted to an integer numeric. If the character string has more than two digits, the exceeding part will be ignored. If the character string has less than two digits, an error will occur.

#### 8. CVD (Character constant variable of eight characters or more)

Gives a character string converted to a double precision integer numeric. If the character string has more than eight digits, the exceeding part will be ignored. If the character string has less than eight digits, an error will occur.

#### 9. MKI\$ (Integer constant variable)

Directly converts the value expressed internally (in binary) in a numeric to a character code. This is opposite to the processing described for CVI ( ).

#### 10. MKD\$ (Double precision integer constant variable)

Directly converts the value expressed internally (in binary) in a numeric to a character code. This is opposite to the processing described for CVD ( ).

#### 11. VAL (Character variable, Numeric variable 1, Numeric variable 2)

Assuming the numeric specified in the second parameter as m, and in the third parameter as n, this function retrieves the numeric character string from among the m-th to n-th characters from the beginning of a character string, ignoring non-numeric codes, and coverts the character string to a double precision real number numeric. The parameter m or n can be omitted. If m is omitted, the portion from the beginning of the character string will be processed. If n is omitted, the portion to the end of the character string will be processed. If no numeric is found, an error will occur.

#### 12. BVAL (Character constant variable)

Converts the parameter expressed in binary to a numeric in decimal without a sign. If the parameter exceeds 32 bits, an error will occur. A character except "0" and "1" will be ignored.

#### 13. HVAL (Character constant variable)

Converts the parameter expressed in hexadecimal to a numeric in decimal without a sign. If the parameter exceeds 32 bits (8 bits), an error will occur. A character except "0" to "9" and "A" to "F" will be ignored.

#### 14. CHR (Numeric constant variable)

Out of the numeric specified in the parameter, this function gives the same character string as will be displayed using the PRINT statement.

#### 15. STR\$ (Numeric constant variable)

Performs the same processing as described for the function CHR ( ).

# 4.1 Components of A Statement

- (b) Functions that search for a character string, etc.
- 1. INSTR ([Numeric constant variable, ] Character constant variable 1, Character constant variable 2)

Searches String 1 for String 2 and returns a value representing the location if found, or the value 0 otherwise. The first parameter, if being a numeric, indicates the location to start the search or, if omitted, specifies to start the search from the beginning. Specify a value between 1 and 225 inclusive.

# 2. LEFT\$ (Character variable, Numeric constant variable)

Gives as many character strings as specified in the parameter from the left end of the character string. If more character strings than the total number of character strings are specified, this function gives all the character strings. Specify a value between 0 and 225 inclusive. If 0 is specified, a blank character string will be given.

# 3. MID\$ (Character variable, Numeric constant variable 1, Numeric constant variable 2)

Assuming the numeric specified in the second parameter as m, and in the third parameter as n, this function gives the character strings from the m-th to n-th characters from the beginning of a character string. Specify a value between 1 and 256 inclusive for m, and between 1 and 255 inclusive for n. If m exceeds the character string length, a blank character string will be given.

# 4. RIGHT\$ (Character constant variable, Numeric constant variable)

Performs the same processing as LEFT\$ ( ) starting from the right end of a character string. Specify a value between 0 and 225 inclusive. However, the order of character strings will not be reversed.

# 5. LEN (Character constant variable)

Gives the number of characters in the character string including the character codes from 0 to \$1F. The size declared in the array will be given.

# 6. SLEN (Character constant variable)

Similar to LEN ( ) and gives the number of characters in the character string, but excluding the spaces at the end of the character string.

# 7. SGET (Character constant variable)

Gives a significant character string excluding the spaces at the end of the character string.

| ( ) |               |  |  |
|-----|---------------|--|--|
|     | Eurotion name |  |  |

(5) Dedicated functions

| Function name                 | Function        | Parameter                              |  |
|-------------------------------|-----------------|----------------------------------------|--|
| Reading an error code         | V-FRREAD (m)    | m 0 : Error code                       |  |
| and an error occurrence       | V=ERRREAD (III) | : Line number where error occurred     |  |
|                               | A#=STATUS (m)   | m 0 : Factor 0                         |  |
| Deading quant factors         |                 | 1 : Factor 1                           |  |
| Reading event factors         |                 | 2 : Factor 2                           |  |
|                               |                 | 3 : Factor 3                           |  |
| Reading year, month and       |                 | m 0 : Year, month and day (YY-MM-DD)   |  |
| day/hour, minute and second   | AŞ=DIREADŞ (m)  | 1 : Hour, minute and second (HH:MM:SS) |  |
| Generating a random number    |                 |                                        |  |
| (more than 0 and less than 1) |                 |                                        |  |

# CAUTION $\triangle$

- ERRREAD (m) can be used only during an error interrupt. For details of an error interrupt, see "ON ERROR Statement" in CHAPTER 4.
- STATUS (m) can be used only during an event interrupt. For details of an event interrupt, see "ENABLE EVENT Statement" in CHAPTER 4.
- For m, use a numeric constant or a numeric variable.
- Pseudo-random numbers generated using RND (m) will appear in the same order every time the command is run. For information on changing the order, see "RNDMIZE Statement" in CHAPTER 4.

# 4.1.6 Arithmetic Operators

# (1) Function

These operators represent the four basic arithmetic operations and the exponential operation.

(2) Format

| =  | Represents assignment.            |
|----|-----------------------------------|
| +  | Represents addition.              |
|    | Represents deduction.             |
| *  | Represents multiplication.        |
| /  | Represents division.              |
| !  | Represents exponential operation. |
| () |                                   |

# (3) Priority

Table 4-1 shows the priority.

| Table 4-1 | Priority | of Arithmetic | Operations |
|-----------|----------|---------------|------------|
|-----------|----------|---------------|------------|

| Priority | Arithmetic Operator |
|----------|---------------------|
| High     | !                   |
| <b>≜</b> | * /                 |
| •        | + -                 |
| Low      | =                   |

# CAUTION $\triangle$

- Bits and characters cannot be calculated.
- X!Y can be calculated if X is a negative number and Y is a positive number.
- If variables of different types exist on the right side of an equation, an overflow or underflow error may occur in the operation.
- In the division of numerics and variables, the resolution of the dividend will be that of the solution.

## 4.1 Components of A Statement

## (4) Example

```
A$="abc"
C=(D+1ØØ)/E
J=((K+1)*1Ø-M)*1Ø
```

# 4.1.7 Relational Operators

# (1) Function

These operators represent the relational operations.

#### (2) Format

| =        | Represents =. |
|----------|---------------|
| >< or <> | Represents ≠. |
| >        | Represents >. |
| <= or =< | Represents ≤. |
| <        | Represents <. |
| >= or => | Represents ≥. |

## (3) Comparing character strings

To compare character strings for size, the system will compare the significant character strings excluding the spaces at the end of character strings on both sides of an operator.

• If two character strings have the same length, the system will compare them starting from the first character and decide as smaller the character string with a smaller character code value for the first non-matching character that appears.

<Example> ABC is smaller than ABXD.

- If two character strings have different lengths, the system will compare them for the corresponding length range. If the character strings are found to be the same, then the system will decide the shorter one as smaller.
   <Example> ABX is larger than ABCD.
  - ABC is smaller than ABCD.
- The character string with the length 0 is the smallest one.
   <Example> When DIM A\$(10) is declared, the length of A\$ is 0.

#### (4) Example

IF C=Ø GOTO 1ØØ

IF JKL>=168 STOP

# 4.1.8 Connecting Character Strings (Operator "+")

(1) Function

Use the operator "+" to connect character strings.

(2) Format

Character string constant Character variable Character string function + Character string function

# Notes:

- This operator can be used only on the right side of the LET statement.
- This operator cannot connect a character and a numeric, a character and a bit, or a bit and a bit.

# (3) Example

```
10Ø A$="ABC"
11Ø B$="DEF"
12Ø A=INATR (A$,"_") -1
13Ø B=INSTR (B$,"_") -1
14Ø C$=LEFT$ (A$,A) +LEFT$ (B$,B)
15Ø PRINT "A$=",AS$
16Ø PRINT "B$=",B$
17Ø PRINT ",C$=",C$
A$= ABC______
B$= DEF______
C$= ABCDEF______
Space
```

# CAUTION A

- The simple character string variable is considered an array-declared variable of 10 characters, unless otherwise specified, and is filled with space when not filled with assigned character string.
- Using the above method, only the characters actually stored can be coupled.

# 4.1 Components of A Statement

# 4.1.9 Data format

(1) Function

Represents the format of a character string used in the output. An integer, a real number without an exponent, a real number with an exponent, a binary and a hexadecimal can be used.

```
(2) Format
```

```
    Integer

    :I Number of digits
    (Between 1 and 18 inclusive)
· Real number without an exponent
    :F Total number of digits. Number of digits in fractional part (Total number of digits ≥ Number of
                                                                  digits in fractional part + 3)
    (Between 4 and 20 inclusive)

    Real number with an exponent

    :E Total number of digits. Number of digits in fractional part (Total number of digits > Number of
                                                                  digits in fractional part + 8)
    (Between 9 and 24 inclusive)
· Character string
    :C Number of digits
    (Between 0 and 255 inclusive)

    Binary

    :B Number of digits
    (Between 1 and 8 inclusive)

    Hexadecimal

    :H Number of digits
    (Between 1 and 2 inclusive)
```

(3) Example

PRINT A\$ : C3, J : F1Ø.4

# CAUTION $\triangle$

- Specifying the number of digits in a character string as 0 will specify the character string variable as a variable length, and output the data as long as the character string variable actually is.
- Specifying a lower-case characters for I, F, E, C, B, H in the above data format will delete the last character space.
- For details, see "PRINT" in CHAPTER 4.

# 4.1.10 Label

# (1) Function

Write a label together with a line number to indirectly specify the jump destination addresses for statements such as GOTO and GOSUB.

# (2) Format

Line number\_\*Label Line number\_\*Label \_ Statement

- A label consists of eight upper-case alphabetical or alphanumeric characters or less with an upper-case alphabetical initial. An asterisk (\*) must be added to the beginning of a label.
- If the same label is defined for different line numbers, an error will occur when the program is executed.

# (3) Example

1Ø INPUT A
2Ø IF A=Ø GOSUB \*ABC1
3Ø IF A<>Ø GOSUB \*ABC2
4Ø GOTO 1Ø
1ØØ \*ABC1
11Ø PRINT"OK!"
12Ø RETURN
2ØØ \*ABC2
21Ø PRINT"NG!"
22Ø RETURN

# 4.2 Basic Statements

# 4.2.1 Remark (REM Statement)

# (1) Function

Gives a remark to a program. This statement does not affect the program execution in any way. To give any words, enclose the words between quotation marks (") to make them a character constant. An apostrophe (') can be used instead of REM. If an apostrophe is used, the words need not be enclosed between quotation marks.

# (2) Format

REM ["Array of statement components"] or '[Array of statement components]

# (3) Example

1Ø REM
2Ø REM "Compute average"
3Ø 'Compute average
4Ø A=1ØØ 'Initial set

# 4.2.2 Array Declaration (DIM Statement)

(1) Function

Declares an array. The array must be either one- or two-dimensional and have a size specified in (2) below depending on the variable name type.

(2) Format

DIM Variable name (Array size [, Array size]) [, Variable name (Array size [, Array size]) ...)

#### Notes:

- An array cannot be redefined for the same variable name.
- An array declaration cannot be made for a variable name defined as independent variable.
- Referencing (reading and writing) an array defined as two-dimensional without a two-dimensional specification will cause error W225.
- Referencing (reading and writing) an array defined as one-dimensional with a two-dimensional specification will cause error W224.
- The number of arrays that can be declared are as follows. Any specification exceeding this range will cause error 203.

| Character type 1 to 225 | Two-dimensional array: |                         |
|-------------------------|------------------------|-------------------------|
| Bit type 1 to 8         | 1st dimension side     | 2nd dimension side      |
| Numeric type 1 to 1024  | 1 to 1024              | Character type 1 to 225 |
|                         |                        | Bit type 1 to 8         |
|                         |                        | Numeric type 1 to 1024  |

- Because the program area will become insufficient for a numeric type array variable, it is impossible to define 1024 in either the 1st or 2nd dimensions. If you do this, error F 206 occurs. The total of declarable arrays, depending on the free memory capacity, cannot be determined.
- The character is fixed to the 10-character type if no array declaration is made.
- The bit type is fixed to 8 characters unless an array declaration is made.
- Referencing (reading and writing) components without making an array declaration will cause error W224.

# (3) Example

DIM CARR(1ØØ),A\$(5,12)
DIM I#(8),ALP\$(4Ø)

(4) System variables unconditionally declared as array sources

```
XMA(1ØØ1),XMB(1ØØ1),SMA(1ØØ1),SMB(1ØØ1),IMA(1ØØ1),IMB(1ØØ1)
IDA(1ØØ1),IDB(1ØØ1),FQM(1ØØ1),LVM(1ØØ1)
IOA(8),IOB(8),IOC(4),IOD(4),
FI1(1Ø),FO1(1Ø),FI2(3),FO2(4),FI3(13),FO3(8)
FI4(4),FO4(3),FI5(1Ø),FO5(5)
```

Inside the brackets ( ) is the number of components in an array.

# 4.2 Basic Statements

# 4.2.3 Initialization (CLEAR Statement)

# (1) Function

Initializes the user-defined variables.

# (2) Format

CLEAR

# Note:

Executing the CLEAR statement, like the RESET statement, will initialize the variables, requiring the arrays to be redefined.

# 4.2.4 Assignment (LET Statement)

(1) Function

Assigns to a variable a constant, a variable, or an operation result from them.

For operators, see "Arithmetic Operators" in CHAPTER 4.

```
(2) Format
```

# Notes:

- The bits and characters cannot be calculated.
- If an assignment statement is entered after the IF statement, LET cannot be omitted.

# (3) Example

LET A=B+C or A=B+C IF X=Ø LET Y=1Ø

# 4.2.5 Branch (GOTO Statement)

# (1)Function

Directs the flow of programs to the specified line number.

# (2) Format

GOTO Line number or GOTO \*Label

# 4.2.6 Terminating Execution (STOP Statement)

# (1) Function

Displays a execution termination message on the screen and terminates executing a program. Display the execution termination message as follows.

STOP IN Line number

# (2) Format

STOP

# Note:

Specifying to suspend execution in a line of the STOP statement will not put the device in the suspended state because the program execution will be terminated.

# 4.2.7 Branch to a Subroutine (GOSUB Statement)

## (1) Function

Directs the flow of programs to a subroutine with the specified line number. Executing the RETURN statement at the end of the subroutine will redirect the flow of programs to the line just after the GOSUB statement.

# (2) Format

GOSUB Line number or GOSUB \*Label

# Note:

Calling another subroutine inside a subroutine is called "nesting". The nesting can be repeated up to ten times in the PTA.

## 4.2 Basic Statements

# 4.2.8 Returning from a Subroutine to a Main Routine (RETMAIN Statement)

# (1) Function

During the program execution, the RETMAIN statement allows you to return to the topmost layer routine regardless of the nesting.

(2) Format

RETMAIN

# Note:

Executing the RETMAIN statement in the topmost layer routine, error F213 will occur.

# 4.2.9 Returning from a Subroutine (RETURN Statement)

(1) Function

Redirects the flow of programs to the line just after the corresponding GOSUB statement.

(2) Format

RETURN

# 4.2.10 Decision (IF Statement)

(1) Function

Compares the relationship between constants or variables and, if the result is true, executes the subordinate statement. For relational operators, see "Relational Operators" in CHAPTER 4.

(2) Format



#### Notes:

- You can write any statement as a subordinate statement, including an IF statement.
- The numerics, characters, and bits cannot be compared with each other.
- Omitting LET is not possible when planning to write an assignment statement after the IF statement.

# (3) Example

```
IF C=1 GOTO 100
IF ACH$=BCH$ PRINT ACH
IF C<10 IF C>=20 PRINT "ERROR"
IF C<10 LET C=10
```

# 4.2.11 Starting Iteration (FOR Statement)

(1) Function

Gives initial, end, and increment values to numerics, and repetitiously executes the portion between this statement and the corresponding NEXT statement until the variable becomes the end value. Up to ten layers of nesting can be used for the FOR statement.

(2) Format



#### Notes:

- Even if the initial value is larger than the end value, the FOR statement will execute a program at least once.
- There is no limitation where the FOR and NEXT statements should be put in relation to each other. Only the order of executing programs must be correct.

```
(3) Example
```

```
FOR C=1 to 100

FOR T=TB TO TE STEP 0.1

FOR D=-1 TO -10 STEP -1

NEXT D

NEXT T

NEXT C

FOR D=-1 TO -10 STEP -1
```

## 4.2 Basic Statements

# 4.2.12 Terminating Iteration (NEXT Statement)

(1) Function

This statement, used together with the FOR statement, specifies the end of iteration.

(2) Format

NEXT Numeric variable

Same variable as the FOR statement

# 4.2.13 Key Input (INPUT Statement)

(1) Function

Enters the data from the ten-key pad on the front panel. Executing the INPUT statement will display the following message on the screen.



Enter data after ? in the same way as for a command input, and press the [ENTER] key in the front panel. Use "," as a separator of data.

#### (2) Format

INPUT ["Displayed character string"] Variable [, Variable ...]

#### Notes:

- If a real number is entered for an integer variable, the fractional part will be rounded off.
- If the input data is shorter than a character variable, spaces will be added. If longer, the tail end will be ignored.
- A hexadecimal cannot be entered.
- Up to five variables can be entered.
- To enter a comma (,), use the [kHz] key on the front panel.
- To enter a minus (-), use the [+/-] or [MHz] key on the front panel.

## (3) Example

INPUT "COUNT= ",C  $\rightarrow$  COUNT=?123 INPUT C,A\$,I#  $\rightarrow$  ?123,Q,101101

# 4.2.14 Display (PRINT Statement)

(1) Function

Edits the data and displays it on the screen.

The data without a data format will be displayed by showing the significant digits and additional spaces after them.

Table 4-2 shows the data format and the output format.

For the data format, see "Data Format" in CHAPTER 4.

Adding ";" at the end of a line will disable the linefeed.

| Data format | Output format                                                                                |
|-------------|----------------------------------------------------------------------------------------------|
| I           | Integer with zeros suppressed (Example: 123)                                                 |
| F           | Integer with zeros suppressed and fraction with zeros suppressed (with sign digit)           |
|             | (Example: 123.45 )                                                                           |
| FP          | Integer with zeros suppressed and fraction with zeros suppressed (without sign digit)        |
|             | (Example: 123.45 )                                                                           |
| E           | ∫ _                                                                                          |
|             | $\left( - \int (\text{Example: } 123\text{E-2} ) \right)$                                    |
| С           | Character string If shorter, data is filled with spaces. If longer, the tail end is ignored. |
| B/H         | Binary or hexadecimal with zeros suppressed (Example: 1011)                                  |

# Table 4-2 Data Format and Output Format

# (2) Format



#### Notes:

- Up to five variables or constants can be used.
- The numeric that cannot be displayed will be displayed as \*\*\*...\*.
- The array variables of a character string are as follows:



# 4.2 Basic Statements

# Note:

The array variables of a binary numeric string are as follows:

Binary numeric string data 1#=#10011

# Note:

Use the data formats i, f, fp, e, c, b, and h (lower case) instead of I, F, FP, E, C, B, and H to delete the spaces at the end of the line.

I(0) I(1) I(2) I(3) I(4)



(3) The following shows the data examples and PRINT output examples.

Table 4-3 shows the output examples of the PRINT statement.

| Data format | Data example  | Command            | Output         |
|-------------|---------------|--------------------|----------------|
| None        | T=1234.45     | PRINT - T          | 123.45         |
|             | A\$="ABCD"    | DIM_A\$ (5)        |                |
|             |               | PRINT - A\$        | ABCDuu         |
|             |               | PRINT_A\$ (2)      | С              |
|             | A\$=(Ø,)="AB" | DIM_A\$ (3, 2)     |                |
|             | A\$=(1,)="CD" | PRINTLA\$ (1, Ø)   | Сш             |
|             | A\$=(2,)="EF" | PRINT A\$ (2, )    | EF             |
| I           | T=1234.56     | PRINT_T : I6       | டப1234ட        |
|             |               | PRINT_T : I4       | 1234 <b></b>   |
|             |               | PRINT_T : I3       | ***            |
| F           | T=-123.45     | PRINT_T : F6.1     | -123.4         |
|             |               | PRINTLT : F9.2     | 123.45_        |
|             |               | PRINTLT : F9.3     | ட –123.450ட    |
|             | T=123456      | PRINT_T : F9.1     | ட 123456.Øட    |
|             |               | PRINT_T : F5.1     | ****           |
| FP          | T=123.45      | PRINT_T : FP6.1    | ட 123.4ட       |
|             |               | PRINTLT : FP9.2    | ட்டட் 123.45 ட |
|             |               | PRINTLT : FP9.3    | டட123.45Øட     |
|             | T=123456      | PRINTLT : FP9.1    | ட123456.Øட     |
|             |               | PRINT_T : FP5.1    | ****           |
| E           | T=-123.45     | PRINTLT : E1Ø.2    | -1.23E2        |
|             |               | PRINTLT : E13.5    | -1.2345- F2    |
|             |               | PRINT T : E15.7    | -1.2345E2      |
|             | T=-Ø.12E1     | PRINT T : E9.2     | -1.2. EØ       |
| С           | A\$="F"       | PRINT A\$ : C3     | Fuuu           |
|             | A\$="ABCDE"   | DIM_AR (5)         |                |
|             |               | print_a\$ : C7     | ABCDE          |
|             |               | PRINT_A\$ : C3     | ABC            |
|             |               | PRINT A\$ : C5     | ABCDE          |
|             |               | PRINT_A\$ (3) : C3 | Duuu           |
|             | A\$="ABCDEF"  | DIM_A\$ (6)        |                |
|             |               | PRINT - A\$        | ABCDEF         |
|             |               | PRINT A\$ (3)      | D              |

Table 4-3 PRINT Statement Output Examples (1/2)

# 4.2 Basic Statements

| Data format | Data example | Command           | Output              |
|-------------|--------------|-------------------|---------------------|
| В           | I#=#1        | PRINT LI# : B1    | 1                   |
|             |              | PRINT LI# : B3    | ØØ1                 |
|             | I#=#1Ø11     | DIM _ I# (4)      |                     |
|             |              | PRINT_I# : B5     | 1ø11                |
|             |              | PRINT LI# : B3    | Ø11                 |
|             |              | PRINT I# (3) : B3 | 1                   |
|             |              | PRINT I# (Ø) : B1 | 1                   |
|             | I#=#1        | PRINT _ I#        | 1                   |
|             |              |                   |                     |
|             | I#=#1Ø11     | DIM_I# (4)        |                     |
|             |              | PRINT - I#        | 1ø11                |
|             | I#=#1ØØ11Ø1Ø | DIM I# (8)        |                     |
|             |              | PRINT _ I#        | 1ØØ11Ø1Ø <b>_</b>   |
|             |              | PRINT _ I# (3)    | 1_                  |
|             | I#=#ØØØ1ØØ11 | PRINT _ I#        | 1ØØ11               |
| Н           | I#=#1        | PRINT LI# : H1    | 1_                  |
|             |              | PRINT LI# : H2    | <b>L</b> 1 <b>L</b> |
|             | I#=#1Ø1Ø     | DIM _ I# (4)      |                     |
|             |              | PRINT I # : H1    | Ац                  |
|             |              | PRINT LI# : H2    | Ашш                 |
|             | I#=#ØØØØ1Ø1Ø | DIM I# (8)        |                     |
|             |              | PRINT LI# : H1    | Аш                  |
|             |              | PRINT LI# : H2    |                     |
|             | I#=#111Ø1Ø1Ø | DIM_I# (8)        |                     |
|             |              | PRINT I # : H1    | Аш                  |
|             |              | PRINT_I# : H2     | EA                  |
|             |              | PRINTLI# (3) : H1 | 1                   |
|             |              | PRINT I# (3) : H2 | 1                   |
|             |              | PRINT_I# (4) : H1 | ØL                  |
|             |              | PRINT_I# (4) : H2 | Øuu                 |
|             | I#=#ØØ11ØØ   | DIM_I# (6)        |                     |
|             |              | PRINT I # : H2    | uСu                 |
|             | I#=#11ØØ1Ø   | PRINT I# : H2     | 32പ                 |

# Table 4-3 PRINT Statement Output Examples (2/2)

# CAUTION $\triangle$

The data example with a DIM command indicates one with an array declaration. The data example without a DIM command indicates one without an array declaration.

# 4.2.15 Reverse Display (PRINTR Statement)

(1) Function

Edits the data and reverse-displays it on the screen. For other details, see "PRINT Statement" in CHAPTER 4.

(2) Format

```
      PRINTR
      Variable [: Data format]
      [, {Variable [: Data format]
      ...] [;]

      Character string constant
      [, {Character string constant}
      ...] [;]

      Constant is displayed as is.
      No linefeed
```

Notes:

- Only the characters with the character codes 0 to 127 can be displayed in reverse video. The PRINTR statement including other characters than these works in the same way as PRINT and displays the characters in normal video.
- A line including the characters with the character codes 128 to 255 cannot be displayed in reverse video. For a line including these characters, PRINTR works in the same way as PRINT and displays the characters in normal video.

# 4.2.16 Specifying the Cursor Location (LOCATE Statement)

# (1) Function

Specifies the cursor location on the screen (with the upper left of the screen as the home position).

(2) Format

# Note:

Both m and n are numeric constant variables.

# 4.2.17 Data Statement (DATA Statement)

# (1) Function

Defines the numeric, bit, and character constants that the DATA statement reads.

(2) Format

DATA Constant, Constant, …

# Note:

As long as parameters for the DATA statement are written within two lines, any number of parameters can be entered, and constants of different types can be mixed in one statement.

# 4.2 Basic Statements

# 4.2.18 Reading Data (RDATA Statement)

# (1)Function

Reads the values from the DATA statement and assigns them to the variables.

# (2) Format

RDATA Variable, Variable, …

# Notes:

- As long as parameters for the RDATA statement are written within two lines, any number of parameters can be entered, and constants of different types can be mixed in one statement.
- When the format of the variable to be assigned and the format of the definition in the DATA statement cannot be assigned during the reading by the RDATA statement, error W208 will be generated.

# 4.2.19 Specifying the Data Statement to Be Read (RESTORE Statement)

# (1) Function

Specifies the DATA statement to be read by the RDATA statement.

# (2) Format

RESTORE [Line number or \*Label name]

# Example:

| 100  | RESTORE 1ØØØ                     |
|------|----------------------------------|
| 11Ø  | FOR I=Ø TO 1Ø                    |
| 12Ø  | RDATA A (I)                      |
| 13Ø  | NEXT I                           |
|      | :                                |
| 1000 | DATA Ø,1,3,7,9,11,13,17,19,23,29 |

#### Note:

The parameters of the RESTORE statement can be omitted. If omitted, the first DATA statement will be specified.

# 4.2.20 Defining the Measurement Parameters (PUT and WRITE 1000 Statements)

# (1) Function

Defines the measurement parameters on the main frame from the PTA. The same messages will be used as for defining the parameters using the remote control. These statements can be used to send an inquiry message to the main frame. These statements can be used without any conditions of device/controller of the external interface port.

# (2) Format

PUT Character constant or Character variable WRITE 1000, Variable or Character constant [, Variable or Character variable]

- 1. PUT statement
  - Writes in an operand a message of the same format as in the remote control.
  - Only a character constant or a character variable can be written in an operand.
  - Only one constant or variable can be written.
  - The data format cannot be specified.
  - To always define a constant or variable at the fixed location, use this statement to simplify the program.

## Example:

PUT "CNF 100 MHZ"

 $\rightarrow$  Defines the measurement parameter center frequency to 100 MHz.

PUT "CNF?"

 $\rightarrow$ Sends a message inquiring for the measurement parameter center frequency.

#### 2. WRITE 1000 statement

- Writes in an operand a message of the same format as in the remote control.
- A variable or a character constant can be written in an operand.
- Up to five constants or variables can be written.
- If a variable is used, the data format can be specified.
- Use this statement if you make definitions several times by changing a part of a control message, or use as a setting value what is handled as a variable in the program.

# Example:

```
\begin{array}{l} \texttt{F=1}\emptyset\emptyset\\ \texttt{WRITE 1}\emptyset\emptyset\emptyset\,, \texttt{"CNF ", F, "MHZ"}\\ & \longrightarrow \text{Defines the measurement parameter center frequency to 100 MHz.} \end{array}
```

```
WRITE 1000,"CNF?"
```

 $\rightarrow$  Sends a message inquiring for the measurement parameter center frequency.
# 4.2.21 Reading the Measurement Parameters and Data (GET, COM and READ 1000 Statements)

#### (1) Function

Reads the measurement parameters and the measurement results on the main frame from the PTA. The same messages will be used as for defining the parameters using the remote control. These statements can be used without any conditions of device/controller of the external interface port.

#### (2) Format

GET "Inquiry command?", Input variable COM "Inquiry command?">Input variable[, Input variable] READ 1000, Input variable[, Input variable] or READ 1000, Input variable[; ]

#### 1. GET statement

- This one statement can both send an inquiry command and read the response data. However, only one inquiry command can be written per statement.
- Only a character constant or a character variable can be written in an "inquiry command". Only one constant or variable can be written. The data format cannot be specified.
- The response data will be stored in the input variable. If the response data includes a character, specify a character variable. If the response data includes only numerics (numeric characters), either a numeric variable or a character variable will do.
- Even if the response data consists of multiple data items separated with ",", the entire data up to the last data item will be stored in one variable. Be careful when you specify a character variable because, if the array size is not large enough, not all the response data may be stored.
- Only one input variable can be specified. ";" cannot be specified at the end of the statement.
- To always send the same inquiry command, use this statement to simplify the program.

#### Example:

GET "CNF?",A\$

 $\rightarrow$  Sends a message inquiring for the center frequency and stores the response data in the input parameter A\$.

- 2. COM statement
  - This one statement can both send an inquiry command and read the response data. However, only one inquiry command can be written per statement.
  - A character constant and/or a variable can be written in an "inquiry command". The data format for the variable can be specified.
  - The response data will be stored in the input variable. If the response data includes a character, specify a character variable. If the response data includes only numerics (numeric characters), either a numeric variable or a character variable will do.
  - Multiple input variables can be written. If the response data consists of multiple data items separated with ",", the data items will be stored in the specified variables one by one.
  - ";" cannot be specified at the end of the statement.
  - Use this statement if you read the data several times by changing a part of a control message, or send an inquiry message for what is handled as a variable in the program.

#### Example:

#### COM "MKV? 1, ", I>ML

Sends a message inquiring for the marker value at No. I of Trace A and stores the response data in the input variable ML.

#### Note:

An inquiry message for each marker level in a multi marker configuration will be specified as "MKV? m, n" (m is the trace code, and n is the multi marker number). Therefore, use this statement to read each marker level by changing the n value only.

- 3. READ 1000 statement
  - Reads the response data. This statement will be valid only if an inquiry message is already sent using the PUT or WRITE 1000 statement.
  - The response data will be stored in the input variable. If the response data includes a character, specify a character variable. If the response data includes only numerics (numeric characters), either a numeric variable or a character variable will do.
  - Multiple input variables can be written. If the response data consists of multiple data items separated with ",", the data items will be stored in the specified variables one by one.
  - To handle the data as one piece even if the response data consists of multiple data items separated with ",", specify ";" at the end of the statement. The entire data including "," will be stored in one input variable. In this case, however, only one input variable can be specified. Alternatively, specify only one input variable and execute this statement for multiple times without specifying ";" to read the data separated with ",".
  - If no response data exists, "\*\*\*" will be output.

#### Example:

```
WRITE 1000, "CNF?"
```

```
READ 1000, A$
```

 $\rightarrow$  Stores in the input parameter A\$ the response data for the inquiry command for the center frequency.

#### 4.2 Basic Statements

# 4.2.22 Loading and Executing the Program (CHAIN Statement)

#### (1) Function

Loads and executes the PTA program file on a storage device (internal memory, FD or PMC).

#### (2) Format

CHAIN "File name"

#### Note:

The command status at the execution of CHAIN (the execution status due to which of the RUN, CONT, or STEP command) will continue even after CHAIN is executed. The break line will also continue to be valid.

# 4.2.23 ENABLE EVENT Statement

#### (1) Function

Enables the specified interrupt.

Causes a branch to the event interrupt subroutine specified in the ON EVENT statement when the specified interrupt occurs.

#### (2) Format

ENABLE EVENT I/O number, Factor 3, Factor 2, Factor 1, Factor 0

- The I/O number is a numeric variable or a numeric constant.
- The factors 0 to 3 are either a numeric variable/constant, a bit variable/constant or a hexadecimal constant.
- This statement can be directly executed.
- The factors 0 to 3 indicate 32 bits of the I/O interrupt factors.
- The defined bits (b0 to b31) are valid when "1" and invalid when "0".
- Define the master bit (b31) as "1" to enable all the defined factors regardless of the settings of b0 to b30.

| b31 | b24      | b23      | b16 | b15 | b8       | b7 |          | b0 |
|-----|----------|----------|-----|-----|----------|----|----------|----|
|     | Factor 3 | Factor 2 |     |     | Factor 1 |    | Factor 0 |    |

#### (3) Types of I/O interrupts

- (a) Interrupts from the soft keys and data knob
  - 1. Soft keys [F1] to [F5]

Pressing the [F1] to [F5] keys (corresponding to system variables EX1 to EX5) in the PTA menu (3/4) will cause an event interrupt. The [F1] to [F5] keys on the PTA keyboard have an equivalent function.

2. Cursor keys

Pressing the [CURSOR UP: F2] and [CURSOR DWN: F3] keys in the PTA menu (2/4) will cause an event interrupt.

3. Data knob

Turning the data knob will cause an event interrupt.

If the operation on the front panel is unlocked, no event interrupt is caused. Right and left turns are differentiated.

- (b) Interrupts from the parallel I/O port

Receiving a hardware interrupt from the PTA parallel I/O port will cause an event interrupt. You can enable or disable this event regardless of the IOEN, IOMA, and IODI statements.

The following shows the bits corresponding to the I/O interrupt types, I/O numbers, and events.

| I/O type                   | I/O<br>No. | Description                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|----------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Soft keys and<br>data knob | 11         | b31       b17       b16       b9       b8       b4       b3       b2       b1       b0         [F1] key       [F2] key       [F2] key       [F3] key       [F4] key       [F5] key         [F5] key       [F5] key       [F5] key       [F5] key       [F5] key         [CURSOR UP: F2] key       [CURSOR DWN: F3] key       Data knob to right         Data knob to left       Master bit |  |  |  |  |
| PTA parallel<br>I/O port   | 41         | b31 b0<br>Master bit An interrupt occurs                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |

#### 4.2 Basic Statements

# 4.2.24 DISABLE EVENT Statement

#### (1) Function

Disables the specified interrupt.

#### (2) Format

DISABLE EVENT I/O number[, Factor 3, Factor 2, Factor 1, Factor 0]

#### Notes:

- The I/O number is a numeric variable or a numeric constant.
- The factors 0 to 3 are either a numeric variable/constant, a bit variable/constant or a hexadecimal constant.
- The factors 0 to 3 can be omitted. If omitted, all the interrupt factors will be disabled.
- This statement can be directly executed.
- The defined bits are disabled (invalid) when "1" and the previous valid/invalid status of these bits continues when "0".

# 4.2.25 ON EVENT Statement

#### (1) Function

Registers the subroutine to which the program will branch when the specified interrupt occurs.

#### (2) Format

ON EVENT I/O number, Line number (or \*Label)

- The I/O number is a numeric variable or a numeric constant.
- This statement can be directly executed.
- Use STATUS(M) to identify the interrupt factors. For details, see "Dedicated Functions" in CHAPTER 4.
- If the ON IO GOTO (GOSUB) statement exists and an interrupt from the PTA parallel I/O port occurs, both this statement and the I/O port statement described earlier will be executed. This statement will be executed first.

### 4.2.26 RETINT Statement

#### (1) Function

Returns from the event interrupt subroutine.

#### (2) Format

RETINT

#### Notes:

- If another return command is used to return from the event interrupt subroutine, an abort error (F204) will occur.
- If the RETINT command is executed except in an event interrupt, an abort error (F251) will occur.
- You can cause a branch from the event interrupt subroutine to an ordinary subroutine (GOSUB...RETURN).

# 4.2.27 IOEN Statement

(1) Function

Enables an interrupt from the PTA parallel I/O port.

After the IOEN is executed, the program will branch to the number specified in the ON IO GOTO or ON IO GOSUB statement.

(2) Format

IOEN

# 4.2.28 IODI Statement

(1) Function

Disables an interrupt from the PTA parallel I/O port. After the IODI is executed, the definitions in the ON IO GOTO or ON IO GOSUB statement will be ignored.

(2) Format

IODI

# 4.2.29 IOMA Statement

(1) Function

Masks an interrupt from the PTA parallel I/O port.

After IOMA is executed, the definitions in the ON IO GOTO or ON IO GOSUB statement will be ignored. However, if the IOEN statement is executed after an interrupt comes from the I/O port, the program will branch to the previously specified line number.

(2) Format

IOMA

#### 4.2 Basic Statements

# 4.2.30 ON IO GOTO and ON IO GOSUB Statements

#### (1) Function

Defines the line numbers to which the program should branch when an interrupt from the PTA parallel I/O port occurs.

#### (2) Format

- ON IO GOTO Line number or \*Label name
- ON IO GOSUB Line number or \*Label name

#### Note:

The EVENT statement, if existing, will be executed before this statement is executed.

# 4.2.31 Specifying the Character Size (DCHSIZE Statement)

(1) Function

Specifies the display character size when the system subroutine DCH is executed.

(2) Format

DCHSIZE Character size number

#### Character size number

0 ..... Small Font 1 ( $16 \times 8$  dots)

- 1 ..... Small Font 2 ( $16 \times 8$  dots)
- 2 ..... Large Font  $(16 \times 16 \text{ dots})$
- The display character size for the PRINT statement, etc. cannot be changed.
- The RESET command, etc. initializes this definition (the initial value is in lowercase 1).
- Lowercase 2 has the same character size as lowercase 1 but its horizontal character intervals are four dots.

# 4.2.32 Home Position (HOME Statement)

(1) Function

Moves the cursor to its home position (upper left corner).

(2) Format

HOME

# 4.2.33 Erasing (ERASE Statement)

#### (1) Function

Erases the lines starting from the one where the cursor is located.

#### (2) Format

ERASE

#### Note:

This statement erases the PTA screen only. If a graphic display is used, not all of the screen is erased. In this case, use the system subroutine CALL CFL.

# 4.2.34 Waiting (WAIT Statement)

#### (1) Function

Waits for the specified time.

#### (2) Format

WAIT { Numeric constant Numeric variable }

Wait time (in seconds; min. 0.01 seconds)

# 4.2.35 Subroutine (CALL Statement)

#### (1) Function

Executes a system subroutine. For details of a system subroutine, see "System Subroutines" in CHAPTER 5.

(2) Format

CALL System subroutine name [(Parameter [, Parameter ...])]

#### 4.2 Basic Statements

# 4.2.36 ON ERROR Statement

#### (1) Function

Registers a system subroutine to which the program will branch (or which will interrupt) if an error occurs.

#### (2) Format

ON ERROR Line number (or \*Label)

#### Notes:

- If an error occurs while an error handling subroutine is executed, the system will stop executing the subroutine.
- If an error statement is in a line just after the one where an error occurred, only the error statement will be executed.
- If an abort error occurs, no interrupt occurs.
- If an error occurs in the data input for INPUT, no interrupt occurs.
- Use ERRREAD (M) to identify the error code and the line where an error occurred. For details, see "Dedicated Functions" in CHAPTER 4.
- Multiple interrupts together with an event interrupt can occur.
- This statement will not apply to an error that occurred in the error interrupt processing.

# 4.2.37 OFF ERROR Statement

#### (1) Function

Cancels the registration of a system subroutine to which the program will branch (or which will interrupt) if an error occurs.

(2) Format

OFF ERROR

### 4.2.38 RETERR Statement

(1) Function

Returns from an error interrupt.

Continues the program from the statement just after the one where an error occurred.

(2) Format

RETERR

- If the RETURN or RETMAIN command is executed to return from the error interrupt, an abort error (F243) will occur.
- If the RETINT command is executed to return from the error interrupt, an abort error (F251) will occur.
- If the RETERR command is executed when the error interrupt cannot be achieved, an abort error (F252) will occur.
- You can cause a branch from the interrupt routine to an ordinary subroutine (GOSUB…RETURN).

# 4.2.39 RETRY Statement

#### (1) Function

Returns from an error interrupt.

Executes the error occurrence statement again to continue the program.

#### (2) Format

RETRY

#### Notes:

- If the RETURN or RETMAIN command is executed to return from the error interrupt, an abort error (F243) will occur.
- If the RETINT command is executed to return from the error interrupt, an abort error (F251) will occur.
- If the RETRY command is executed when the error interrupt cannot be achieved, an abort error (F252) will occur.
- You can cause a branch from the interrupt routine to an ordinary subroutine (GOSUB...RETURN).

# 4.2.40 RESUME Statement

(1) Function

Returns from an error interrupt. Continues the program from the specified line.

#### (2) Format

RESUME Line number (or \*Label)

- If the RETURN or RETMAIN command is executed to return from the error interrupt, an abort error (F243) will occur.
- If the RETINT command is executed to return from the error interrupt, an abort error (F251) will occur.
- If the RESUME command is executed when the error interrupt cannot be achieved, an abort error (F252) will occur.
- You can cause a branch from the interrupt routine to an ordinary subroutine (GOSUB...RETURN).

#### 4.2 Basic Statements

# 4.2.41 GIVEUP Statement

(1) Function

Returns from an error interrupt. Stops executing the program.

(2) Format

GIVEUP

#### Notes:

- If the RETURN or RETMAIN command is executed to return from the error interrupt, an abort error (F243) will occur.
- If the RETINT command is executed to return from the error interrupt, an abort error (F251) will occur.
- If the GIVEUP command is executed when the error interrupt cannot be achieved, an abort error (F252) will occur.
- You can cause a branch from the interrupt routine to an ordinary subroutine (GOSUB...RETURN).

# 4.2.42 Error Branch (ERROR Statement)

(1) Function

If a recoverable error occurs while a program is executed, use the ERROR statement to continue the execution. The ERROR statement can be written over several lines. For details, see "ERROR Statement" in CHAPTER 8.

(2) Format

ERROR (Error number, Program line to be executed next or \*Label name)

# 4.2.43 Error Main (ERRMAIN Statement)

(1) Function

If a recoverable error (with an error code with W as its initial) occurs while a program is executed, use the ERRMAIN statement to have the program branch to a routine in the topmost layer.

(2) Format

ERRMAIN (Error number)

- If the ERRMAIN command is executed in the topmost layer, error F213 will occur.
- For details, see "ERRMAIN" in CHAPTER 8.

# 4.2.44 Data Input 1 (READ Statement)

(1) Function

Receives data from the external device if the external interface port is specified to the controller port. Reads data from dual port memory if a device port is specified.

(2) Format

READ Address, Input variable[, Input variable…] READ Address, Variable[;]

- If "; " is not added at the end of the statement, the system will regard a comma "," in the received data as the separator of data items, and stores them separately in several input variables.
- If "; " is added at the end of the statement, the system will not regard a comma "," in the received data as the separator of data items, and stores all the data up to the terminator in one input variable.
- The memory number is specified as an address if reads data from the dual port memory.

# 4.2.45 Data Input 2 (BREAD Statement)

(1) Function

Receives one byte of binary data from the external device if the external interface port is specified to the controller port. This statement cannot be executed if a device port is specified.

(2) Format

BREAD Address, Input variable[, Input variable…]

# 4.2.46 Data Input 3 (WREAD Statement)

(1) Function

Receives one word of binary data from the external device if the external interface port is specified to the controller port. The data will be regarded as upper to lower bytes in the order of sending and stored in input variables. This statement cannot be executed if a device port is specified.

(2) Format

WREAD Address, Input variable[, Input variable…]

# 4.2.47 Data Output 1 (WRITE Statement)

(1) Function

Sends data to the external device if the external interface port is specified to the controller port. Writes data to the dual port memory if a device port is specified.

(2) Format

WRITE Address, Variable[: Data format][, Variable[: Data format…][;]

- A character constant can also be output.
- If "; " is added at the end of the statement, the terminator will not be output.
- The memory number is specified as an address if writes data to the dual port memory.

#### 4.2 Basic Statements

# 4.2.48 Data Output 2 (BWRITE Statement)

#### (1) Function

Sends one byte of binary data to the external device if the external interface port is specified to the controller port. This statement cannot be executed if a device port is specified.

#### (2) Format

```
BWRITE Address, Variable[, Variable...]
```

#### Notes:

- Neither the data format or "; " can be specified.
- The terminator will not be output.

# 4.2.49 Data Output 3 (WWRITE Statement)

#### (1) Function

Sends one word (two bytes) of binary data in the order of upper to lower bytes to the external device if the external interface port is specified to the controller port. This statement cannot be executed if a device port is specified.

(2) Format

WWRITE Address, Variable[, Variable...]

#### Notes:

- Neither the data format or "; " can be specified.
- The terminator will not be output.

Specifing the external interface port

- If one or two digits (e.g., 5 or 17) are specified as an address, the device connected to the port specified in the remote-control PORT command (active port) will be controlled. If three digits (e.g., 105 or 217) are specified as an address, the upper one digit indicates the port number and the lower two digits indicate the address of the device connected to the port specified with the port number. The former will be called the indirect port specification, and the latter the direct port specification.
- As a matter of form, you must specify the address in the indirect port specification and the lower two digits of address in the direct port specification although neither of them are significant for the RS-232C or parallel (Centronics) interface.

#### Example:

WRITE \_ 5, "ABC" ...... Sends data to Address 5 on the specified port (indirect port specification)
WRITE \_ 100, A\$ ....... Inputs data from a device on Port No.1 (GPIB) (indirect port specification)
WRITE \_ 205, "ABC" ....... Sends data to Address 5 on Port No. 2 (RS-232C) (direct port specification)
WRITE \_ 300, "ABC" ......... Sends data to a device on Port No. 3 (parallel (Centronics)) (direct port specification)

These address specifications are valid for the WRITE, BWRITE, WWRITE, READ, BREAD, WREAD, and LISTG statements.

The following shows the relationship between the port specification commands and the active ports.

|                          | Indirect port specification | Direct port specification |                      |                        |  |
|--------------------------|-----------------------------|---------------------------|----------------------|------------------------|--|
|                          | WRITE 5                     | WRITE 1Ø5                 | WRITE 2Ø5            | WRITE 3Ø5              |  |
|                          | GPIB is an active port      | GPIB is an active         | RS-232C is an active | Parallel (Centron-     |  |
| After executing "PORT 1" |                             | port                      | port (see note)      | ics) is an active port |  |
|                          |                             |                           |                      | (see note)             |  |
|                          | RS-232C is an active        | GPIB is an active         | RS-232C is an active | Parallel (Centron-     |  |
| After executing "PORT 2" | port (see note)             | port                      | port (see note)      | ics) is an active port |  |
|                          |                             |                           |                      | (see note)             |  |
|                          | Parallel (Centronics) is    | GPIB is an active         | RS-232C is an active | Parallel (Centron-     |  |
| After executing "PORT 3" | an active port (see note)   | port                      | port (see note)      | ics) is an active port |  |
|                          |                             |                           |                      | (see note)             |  |

#### Note:

Specify the address as a matter of form although it is not significant for the RS-232C or parallel (Centronics) interface.

# 4.2.50 Writing Data to Dual Port Memory (WDPM Statement)

(1) Function

Writes data to a dual port memory. For details, see "Dual Port Memory" in CHAPTER 6.

(2) Format

WDPM Memory number, Variable[: Data format][, Variable[: Data format]...]

#### Notes:

- A character constant can also be output.
- ";" cannot be specified.
- This statement can be executed regardless of the device/controller status on the external interface port.

# 4.2.51 Reading Data to Dual Port Memory (RDPM Statement)

#### (1) Function

Reads data to a dual port memory. For details, see "Dual Port Memory" in CHAPTER 6.

#### (2) Format

RDPM Memory number, Input variable[, Input variable...]

- ";" cannot be specified.
- To enter the data items separated with ", ", specify multiple input variables.
- This statement can be executed regardless of the device/controller status on the external interface port.

#### 4.2 Basic Statements

# 4.2.52 SOS (SOS)

#### (1) Function

Displays SOS in the statement where a syntax error occurred when the program is loaded.

#### (2) Format

Line No. SOS Statement of grammatical error

#### Notes:

- A statement with an SOS will be handled as a comment statement as for the REM statement. If this program is executed, it will be handled as a syntax error.
- A line number error will be handled as a syntax error (W6) and no SOS indication is given.

# 4.2.53 Switching the Write Strobe Signal from the PTA Parallel I/O Port (OLDPORT Statement)

(1) Function

Switches the timing of generating the write strobe pulses that are output when the data is written to Ports C and D in the PTA parallel I/O port.

(2) Format

OLDPORT

- If this statement is not executed: In about 1 µs after the data is written, the write strobe signals of pulse width 1 µs will be output.
- If this statement is executed: As soon as the data is written, the write strobe signal of pulses will be terminated (Operation mode B: Compatible to MS6401\*)

#### Notes:

- After the data is written and the stable data is externally output, use "Operation Mode A" to latch and use the signal.
- To detect the timing of data change, use "Operation Mode B".
- At power-on, "Operation Mode A" is initially opted.
- After this statement is executed, Operation Mode B will continue until the next power-on.
- For details of the write strobe signal generation timing, see CHAPTER 9, "CONTROLLING THE PTA PARALLEL I/O PORT".

The timing of generating the write strobe pulses that are output when the data is written to Ports C and D in the PTA parallel I/O port are somewhat different from that of MS3401\*. If an error occurs when the write strobe pulses are used in combination with the jigs that used to be connected to the MS3401\*, use this statement to change the generation timing to "Compatible to MS3401\*". As long as no particular problems are encountered, use of the new generation timing is recommended.

# 4.2.54 Defining the Pseudo-Random Number (RNDMIZE Statement)

#### (1) Function

Defines the new initial value for the pseudo-random number sequence generated by the RND function.

#### (2) Format

RNDMIZE

#### Note:

If this statement is not executed, the RND function in the program will generate the same pseudo-random number sequence every time the program is executed.

In addition to PTL which comprises the basic statements, an extended PTL called the system variable and system subroutine is available. The extended PTL enables calculation and assessment of measuring results as well as control of external devices.

| 5.1 | Systen | n Variable                                | 5-3  |
|-----|--------|-------------------------------------------|------|
|     | 5.1.1  | System Variable - FORMAT/CALIBRATION      | 5-4  |
|     | 5.1.2  | System Variable - MARKER                  | 5-5  |
|     | 5.1.3  | System Variable - DISPLAY                 | 5-6  |
|     | 5.1.4  | System Variable - MEASURING CONDITIONS    | 5-7  |
|     | 5.1.5  | System Variable - SWEEP CONTROL           | 5-8  |
|     | 5.1.6  | System Variable - SAVE/RECALL             | 5-8  |
|     | 5.1.7  | System Variable - SYSTEM CONTROL          | 5-8  |
|     | 5.1.8  | System Variable - WAVEFORM MEMORY,        |      |
|     |        | FREQUENCY TABLE DATA, LEVEL TABLE DATA    | 5-9  |
|     | 5.1.9  | Relation between Waveform Memory and      |      |
|     |        | Internal Measuring Memory                 | 5-10 |
|     | 5.1.10 | System Variable - PTA PROGRAM SWITCH/MENU |      |
|     |        | SWITCH                                    | 5-11 |
|     | 5.1.11 | System Variable - PTA PARALLEL I/O PORT   | 5-11 |
|     | 5.1.12 | System Variable - FILTER FUNCTION I/O     | 5-11 |
| 5.2 | Systen | n Sub-Routine                             | 5-12 |
|     | 5.2.1  | CER, CRN Sub-Routine                      | 5-13 |
|     | 5.2.2  | CFL Sub-Routine                           | 5-14 |
|     | 5.2.3  | DCH Sub-Routine                           | 5-15 |
|     | 5.2.4  | DLN Sub-Routine                           | 5-16 |
|     | 5.2.5  | DRC Sub-Routine                           | 5-17 |
|     | 5.2.6  | DCR Sub-Routine                           | 5-18 |
|     | 5.2.7  | DAR Sub-Routine                           | 5-19 |
|     | 5.2.8  | DEF Sub-Routine                           | 5-20 |
|     | 5.2.9  | OPNI, OPNO and FDEL Sub-Routine           | 5-20 |
|     | 5.2.10 | DALD and DASV Sub-Routine                 | 5-21 |
|     | 5.2.11 | CLS Sub-Routine                           | 5-21 |
|     | 5.2.12 | IFC Sub-Routine                           | 5-22 |
|     | 5.2.13 | RSV Sub-Routine                           | 5-22 |
|     | 5.2.14 | DEV Sub-Routine                           | 5-22 |
|     | 5.2.15 | Interface Control Sub-Routine (GPIB)      | 5-23 |
|     | 5.2.16 | PNLU and PNLL Sub-Routine                 | 5-24 |
|     | 5.2.17 | COPY Sub-Routine                          | 5-25 |
|     | 5.2.18 | DJG Sub-Routine                           | 5-26 |
|     | 5.2.19 | BZR Sub-Routine                           | 5-26 |

| 5.3 | Systen | n Function                   | 5-27 |
|-----|--------|------------------------------|------|
|     | 5.3.1  | MAX Function                 | 5-29 |
|     | 5.3.2  | MIN Function                 | 5-29 |
|     | 5.3.3  | RPL1 and RPL2 Function       | 5-30 |
|     | 5.3.4  | RPL3 Function                | 5-31 |
|     | 5.3.5  | RPL4 Function                | 5-32 |
|     | 5.3.6  | BNDL, BNDH and MEAS Function | 5-33 |
|     | 5.3.7  | PLRH and PLRL Function       | 5-35 |
|     | 5.3.8  | POLL and POLH Function       | 5-36 |
|     | 5.3.9  | FILTER 1 Function            | 5-37 |
|     | 5.3.10 | FILTER 2 Function            | 5-40 |
|     | 5.3.11 | FILTER 3 Function            | 5-41 |
|     | 5.3.12 | FILTER 4 Function            | 5-44 |
|     | 5.3.13 | FILTER 5 Function            | 5-46 |
|     | 5.3.14 | GPDLY Function               | 5-48 |
|     | 5.3.15 | GST Function                 | 5-49 |

#### 5.1 System Variable

# 5.1 System Variable

The system variable refers to numeric variables pre-registered in the unit. Therefore, these system variables (variable names) cannot be used as user-defined variables for other purposes. Substituting a value for the system variable chiefly enables setup of measuring conditions and execution of measurements. Moreover, substituting the system variable for the user-defined variable enables loading of measuring conditions and data currently held by the measuring unit to the PTA.

An example where the system variable is used is shown below.

\* Setup \*

CNF = 10000000

Substituting a numeric constant, 10000000, for the system variable corresponding to the center frequency of "CNF" enables the center frequency of the measuring unit to be set at 10000000 Hz = 10 MHz.

\* Loading \*

A = CNF

The center frequency value currently registered at the measuring unit is loaded and substituted for the user-defined variable A.

# 

- Entering a character row such as "MHz" to substitute for the system variable is not allowed because the system variable only comprises numerical values.
- System variables are not available in a way to meet all the measuring conditions. To set up measuring conditions not covered by the pre-defined system variables, use WRITE, 1000 or PUT statement, and execute the normal remote command (GPIB command).

# 5.1.1 System Variable - FORMAT/CALIBRATION -

| Function                                        | System Variable | Input and Output | Data                                                                                       |
|-------------------------------------------------|-----------------|------------------|--------------------------------------------------------------------------------------------|
| FORMAT                                          | TRC             | I/O              | 0 :LOGMAG                                                                                  |
|                                                 |                 |                  | 1 :PHASE                                                                                   |
|                                                 |                 |                  | 2 :DELAY                                                                                   |
|                                                 |                 |                  | 3 :LOGMAG & PHASE                                                                          |
|                                                 |                 |                  | 4 :LOGMAG & DELAY                                                                          |
|                                                 |                 |                  | 5 :POLAR                                                                                   |
|                                                 |                 |                  | 6 :IMPD CHART                                                                              |
|                                                 |                 |                  | 7 :ADMT CHART                                                                              |
|                                                 |                 |                  | 8 :VSWR                                                                                    |
|                                                 |                 |                  | 9 :LIN MAG                                                                                 |
|                                                 |                 |                  | 10 :LINMAG & PHASE                                                                         |
|                                                 |                 |                  | 11 :LINMAG & DELAY                                                                         |
|                                                 |                 |                  | 12 :REAL                                                                                   |
|                                                 |                 |                  | 13 :IMAGINARY                                                                              |
|                                                 |                 |                  | 14 :REAL/IMAGINARY                                                                         |
|                                                 |                 |                  | 15 :LOG Z                                                                                  |
|                                                 |                 |                  | 16 :LOG Z & θ                                                                              |
|                                                 |                 |                  | 17 :Q                                                                                      |
|                                                 |                 |                  | 18 :LOG Z & Q                                                                              |
| $X \rightarrow S$ (Normalization of the sween ) | CAL             | Input            | 1: $X \rightarrow S$ Starting of the sweep 2: $X \rightarrow S$ sweep with synchronization |
| X > 5 (Normalization of the sweep.)             |                 | Output           | 0: $X \rightarrow S$ Ending of the sweep / 1: During the sweep (Notes)                     |
| $X \rightarrow S$ (Normalization of ON/OFF)     | CXS             | I/O              | 0 : OFF/1 : ON                                                                             |
| Phase offset                                    | РНО             | I/O              | -180.000 to +180.000                                                                       |

#### Notes:

Requesting loading of the sweep status during the sweep process results in a situation where a response data from the measuring unit will not be returned, and the loading request switches into a waiting status. This means that the PTA program and command that follow cannot be executed. The loading request is executed when the sweep ends (sweep suspension status) and the program moves to the next step.

Press the LOCAL key located on the front panel of the measuring instrument to cancel the loading request. The response data will be returned from the measuring unit regardless of whether the unit is in the sweep status.

### 5.1 System Variable

| Function                         | System Variable | Input and Output | Data                        |
|----------------------------------|-----------------|------------------|-----------------------------|
| Marker function                  | MKR             | Input            | 0 :NORMAL MARKER            |
|                                  |                 |                  | 1 :DELTA MARKER             |
|                                  |                 |                  | 2 :ZERO MARKER              |
|                                  |                 |                  | 3 :MKR $\rightarrow$ MAX    |
|                                  |                 |                  | 4 :MKR $\rightarrow$ MIN    |
|                                  |                 |                  | 5 :MKR CHANGE               |
|                                  |                 |                  | $6 : MKR \to CF$            |
|                                  |                 |                  | 7 :DELTA $\rightarrow$ SPAN |
|                                  |                 |                  | 8 :MKR $\rightarrow$ OFS    |
|                                  |                 |                  | 9 :MKR $\rightarrow$ +PEAK  |
|                                  |                 |                  | $10:MKR \rightarrow -PEAK$  |
|                                  |                 |                  | 11 :TRK+PEAK                |
|                                  |                 |                  | 12 :TRK–PEAK                |
|                                  |                 | Output           | 0 :NORMAL MARKER            |
|                                  |                 |                  | 1 :DELTA MARKER             |
|                                  |                 |                  | 2 :ZERO MARKER              |
| Active market position           | СМК             | I/O              | 0 to 1000 (point)           |
| Reference market position        | RMK             | I/O              | 0 to 1000 (point)           |
| Marker deletion                  | MKD             | I/O              | 0 : OFF / 1 : ON            |
| Zero marker value (TRACE-A)      | ZRA             | Output           |                             |
| Zero marker value (TRACE-B)      | ZRB             | Output           |                             |
| Reference market value (TRACE-A) | RFA             | Output           |                             |
| Reference market value (TRACE-B) | RFB             | Output           |                             |
| Active market value (TRACE-A)    | MVA             | Output           |                             |
| Active market value (TRACE-B)    | MVB             | Output           |                             |
| Active market frequency          | MKF             | Output           | Output of the active trace  |

# 5.1.2 System Variable - MARKER -

| Function          | System Variable | Input and Output | Data                             |
|-------------------|-----------------|------------------|----------------------------------|
| Auto scale        | SAU             | Input            |                                  |
| Scale (TRACE-A)   | SCA             | I/O              | Same as the remote command (GPIB |
|                   |                 |                  | command) parameter               |
| Scale (TRACE-B)   | SCB             | I/O              | Same as the remote command (GPIB |
|                   |                 |                  | command) parameter               |
| Offset (TRACE-A)  | OFA             | I/O              | Same as the remote command (GPIB |
|                   |                 |                  | command) parameter               |
| Offset (TRACE-B)  | OFB             | I/O              | Same as the remote command (GPIB |
|                   |                 |                  | command) parameter               |
| Sub-trace         | STR             | I/O              | 0 :OFF                           |
|                   |                 |                  | $1:MT \rightarrow ST$            |
|                   |                 |                  | 2 :MT=ST                         |
|                   |                 |                  | 3 :MT=MT-ST                      |
|                   |                 |                  | 4 :ON (Input only)               |
| Grid type         | DF1             | I/O              | 0 :ALL                           |
|                   |                 |                  | 1 :CENTER                        |
|                   |                 |                  | 2 :FRAME                         |
| Split display     | DF2             | I/O              | 0 : OFF / 1 : ON                 |
| Overwrite display | OVP             | I/O              | 0: OFF / 1: ON                   |

# 5.1.3 System Variable - DISPLAY -

#### 5.1 System Variable

# 5.1.4 System Variable - MEASURING CONDITIONS -

| Function                                    | System Variable | Input and Output | Data                                             |
|---------------------------------------------|-----------------|------------------|--------------------------------------------------|
| Center frequency                            | CNF             | I/O              | Center frequency numerical value data (Unit: Hz) |
| Frequency span                              | SPF             | I/O              | Frequency span numerical value data (Unit: Hz)   |
| Start frequency                             | STF             | I/O              | Start frequency numerical value data (Unit: Hz)  |
| Stop frequency                              | SOF             | I/O              | Stop frequency numerical value data (Unit: Hz)   |
| Frequency setup mod                         | FRQ             | I/O              | 0 : CF-SPAN / 1 : START-STOP                     |
| LIN/LOG                                     | LGF             | I/O              | 0 : LIN / 1 : LOG                                |
| Sweep time                                  | SWT             | I/O              | Sweep time numerical value data (Unit: ms)       |
| Automatic setup of the sweep                | AU1             | I/O              | 0: OFF (MANUAL) / 1: ON (AUTO)                   |
| time                                        | AVG             | I/O              | 1 to 1000 (times)                                |
| Averaging                                   | MEP             | I/O              | 0 :11 (points)                                   |
| Number of measuring points                  |                 |                  | 1 :21                                            |
|                                             |                 |                  | 2 :51                                            |
|                                             |                 |                  | 3 :101                                           |
|                                             |                 |                  | 4 :251                                           |
|                                             |                 |                  | 5 :501                                           |
|                                             |                 |                  | 6 :1001                                          |
| Number of break points                      | ВКР             | I/O              | 1 to 1001 (points)                               |
| Total sweep/marker sweep                    | SW1             | I/O              | 0 : FULL / 1 : MARKER                            |
| Resolution bandwidth                        | RBW             | I/O              | 0 :3 Hz                                          |
|                                             |                 |                  | 1 :10 Hz                                         |
|                                             |                 |                  | 2 :30 Hz                                         |
|                                             |                 |                  | 3 :100 Hz                                        |
|                                             |                 |                  | 4 :300 Hz                                        |
|                                             |                 |                  | 5 :1 kHz                                         |
|                                             |                 |                  | 6 :3 kHz                                         |
|                                             |                 |                  | 7 :10 kHz                                        |
|                                             |                 |                  | 8 :500 Hz                                        |
|                                             |                 |                  | 9 :2 kHz                                         |
|                                             |                 |                  | 10 :4 kHz                                        |
|                                             |                 |                  | 11 :5 kHz                                        |
|                                             |                 |                  | 12 :20 kHz                                       |
| Automatic setup of the resolution bandwidth | AU2             | I/O              | 0 : OFF (MANUAL) / 1 : ON (AUTO)                 |
| Output power/start power                    | OPL             | I/O              | Input/output for the output power when           |
|                                             |                 |                  | the power sweep is OFF and for the start         |
|                                             |                 |                  | power when the power sweep is ON.                |
|                                             |                 |                  | Output/start power numerical value data          |
|                                             |                 |                  | (Unit: dBm)                                      |
| Power sweep                                 | LSW             | I/O              | 0: OFF / 1: ON                                   |
| Stop power                                  | SOL             | I/O              | Stop power numerical value data (Unit: dBm)      |
| Step level                                  | SEL             | I/O              | Step level numerical value data (Unit: dBm)      |
| Input range (TAch)                          | IRG             | I/O              | 0 : 0 dBm / 1 : +20 dBm                          |
| Input impedance (TAch)                      | IMP             | I/O              | 0 : 50, 75 Ohm / 1 : 1 MOhm                      |
| Overload                                    | OVL             | Output           | 0 : NORMAL / 1 : OVER LOAD                       |

| Function                              | System Variable | Input and Output | Data                                                      |
|---------------------------------------|-----------------|------------------|-----------------------------------------------------------|
| REPEAT sweep and SINGLE sweep         | SW2             | I/O              | 0:REPEAT/1:SINGLE                                         |
| Resetting and resumption of the sweep | CW/2            | Input            | 0: STOP/1: RESET/2:CONTINUE                               |
| and loading of the sweep status       | 5W3             | Output           | 0 : Ending of the sweep / 1: During the sweep (Notes)     |
|                                       |                 | Input            | 0: Starting of the REPEAT sweep/1: Starting of the SINGLE |
| Starting of the sweep/loading of      | SWP             |                  | sweep/2: Single sweep (with sweep end synchronization)    |
| the sweep status                      |                 | Output           | 0: Ending of the sweep/1: During the sweep (Notes)        |

# 5.1.5 System Variable - SWEEP CONTROL -

#### Notes:

Requesting loading of the sweep status during the sweep process results in a situation where a response data from the measuring unit will not be returned, and the loading request switches into wait status. This means that the PTA program and command that follow cannot be executed. The loading request is executed when the sweep ends (sweep suspension status) and the program moves to the next step.

Press the LOCAL key located on the front panel of the measuring instrument to cancel the loading request. The response data will be returned from the measuring unit regardless of whether the unit is in the sweep status.

# 5.1.6 System Variable - SAVE/RECALL -

| Function                  | System Variable | Input and Output | Data                              |
|---------------------------|-----------------|------------------|-----------------------------------|
| SAVE ITEM parameter       | SV1             | I/O              | 0 : OFF / 1 : ON on the active CH |
| SAVE ITEM S data          | SV2             | I/O              | 0 : OFF / 1 : ON on the active CH |
| SAVE ITEM X data          | SV3             | I/O              | 0 : OFF / 1 : ON on the active CH |
| SAVE ITEM frequency table | SV4             | I/O              | 0 : OFF / 1 : ON on the active CH |
| SAVE ITEM level table     | SV4             | I/O              | 0 : OFF / 1 : ON on the active CH |
| File delete               | DLM             | Input            | File No. data                     |
| Media format              | MA4             | Inpu             | 1 : Format execution              |

# 5.1.7 System Variable - SYSTEM CONTROL -

| Function                             | System Variable | Input and Output | Data                         |
|--------------------------------------|-----------------|------------------|------------------------------|
| Title display                        | TTL             | I/O              | 0 : OFF / /1 : ON            |
| Talker data terminator               | TRM             | I/O              | 0 : LF+EOI / 1 : CR&LF+EOI   |
| Time out (when using the controller) | GTM             | I/O              | Time out data (Unit: sec)    |
| Clock Year                           | DT0             | I/O              | 0 to 99                      |
| Clock Month                          | DT1             | I/O              | 1 to 12                      |
| Clock Day                            | DT2             | I/O              | 1 to 31                      |
| Clock Hour                           | DT3             | I/O              | 0 to 23                      |
| Clock Minute                         | DT4             | I/O              | 0 to 59                      |
| Initialization                       | INI             | Input            | 1 : Initialization execution |

#### 5.1 System Variable

The system variable DT0 is a numeric variable which indicates the lower 2 digits of the Gregorian calendar year. The data range is 0 to 99. When the MS4630B is used to display and print the year data using the following program (as shown below) during the year 2000 to 2009, the data is displayed and printed by one digit (as shown below).

#### <Program example>

100 PRINT DTØ

#### <Displayed result at year 2000>

Ø

When the year data is required to be printed by 2 digits, create the program as follows. This program is made to add "0" at the beginning of the year data if the year data of DT0 is between 0 and 9.

```
<Program example>
```

```
10Ø A$=DTØ
11Ø IF DTØ=Ø LET A$="ØØ"
12Ø IF DTØ=1 LET A$="Ø0"
13Ø IF DTØ=2 LET A$="Ø2"
14Ø IF DTØ=3 LET A$="Ø3"
15Ø IF DTØ=4 LET A$="Ø4"
16Ø IF DTØ=5 LET A$="Ø5"
17Ø IF DTØ=6 LET A$="Ø6"
18Ø IF DTØ=7 LET A$="Ø6"
19Ø IF DTØ=8 LET A$="Ø8"
2ØØ IF DTØ=9 LET A$="Ø9"
21Ø PRINT A$
```

# 5.1.8 System Variable - WAVEFORM MEMORY, FREQUENCY TABLE DATA, LEVEL TABLE DATA -

The following memory types are mounted on each CH.

| Function                      | System Variable | Input and Output | Data                                         |
|-------------------------------|-----------------|------------------|----------------------------------------------|
| Waveform memory A             |                 | 1/0              | <b>B</b> aal type array variable (0 to 1000) |
| (equivalent to TRACE-A)       |                 | 1/0              | Real type array variable (0 to 1000)         |
| Waveform memory B             |                 | 1/0              | Real turns arrow variable (0 to 1000)        |
| (equivalent to TRACE-B)       |                 | 1/0              | Real type array variable (0 to 1000)         |
| S memory A                    | SMA()           | I/O              | Real type array variable (0 to 1000)         |
| S memory B                    | SMB()           | I/O              | Real type array variable (0 to 1000)         |
| Image memory A                | IMA()           | I/O              | Real type array variable (0 to 1000)         |
| Image memory B                | IMB()           | I/O              | Real type array variable (0 to 1000)         |
| Internal measuring memory for |                 | 1/0              | Floating, real type array variable           |
| the image memory A            |                 | 1/0              | (0 to 1000)                                  |
| Internal measuring memory for |                 |                  | Floating, real type array variable           |
| the image memory B            |                 | 1/0              | (0 to 1000)                                  |
| Frequency table               | FQM()           | I/O              | Real type array variable (0 to 1000)         |
| Level table                   | LVM()           | I/O              | Real type array variable (0 to 1000)         |

# 5.1.9 Relation between Waveform Memory and Internal Measuring Memory

In addition to the XMA, XMB, SMA, SMB, IMA and IMB waveform memory types, internal measuring memory types corresponding to individual waveform memory types are also mounted on this measuring instrument.

The measuring data obtained from sweeping are first stored into these internal measuring memory types. The data in the measuring memory comes in the form of a floating, real data, which are used to calculate the PTA system function and marker as well as save a storage device (internal memory, FD or PMC).

Reading of and writing into the measuring data memory from the external device are in principle not possible, with exceptions of internal measuring memory types of IDA and IDB which correspond to the image memory types of IMA and IMB respectively.

The waveform memory, on the other hand, stores waveform data constituting the display data, which are generated using the data from the measuring memory. Although reading of and writing into the waveform memory from the external device are allowed, any resultant modifications will not be reflected upon the internal measuring memory.

However, the system sub-routine for memory copy, CALL COPY, enables copying of both waveform memory data and the internal measuring memory data from the source memory to the destination memory.

Moreover, this function also enables writing of any given data into internal memory types of IDA and IDB and copying such data onto other internal measuring memory types using the copy sub-routine. It is also possible to carry out the process from the opposite way, namely copying data from other internal measuring memory types onto IDA and IDB to execute system function.



| Function         | System Variable | Input and Output | Data                             |
|------------------|-----------------|------------------|----------------------------------|
| Program switch 1 | EX1             | I/O              | 0 : OFF / 1 : ON                 |
| Program switch 1 | EX2             | I/O              | 0 : OFF / 1 : ON                 |
| Program switch 1 | EX3             | I/O              | 0 : OFF / 1 : ON                 |
| Program switch 1 | EX4             | I/O              | 0 : OFF / 1 : ON                 |
| Program switch 1 | EX5             | I/O              | 0 : OFF / 1 : ON                 |
| PTA menu switch  |                 | Input            | 2 : Displaying the PTA 1/4 menu. |
|                  |                 |                  | 3 : Displaying the PTA 2/4 menu. |
|                  |                 |                  | 4 : Displaying the PTA 3/4 menu. |
|                  |                 |                  | 5 : Displaying the PTA 4/4 menu. |
| PTA menu switch  | EX6             | I/O              | 0 : Displaying the PTA 1/4 menu. |
|                  |                 |                  | 1 : Displaying the PTA 2/4 menu. |
|                  |                 |                  | 2 : Displaying the PTA 3/4 menu. |
|                  |                 |                  | 3 : Displaying the PTA 4/4 menu. |

# 5.1.10 System Variable - PTA PROGRAM SWITCH/MENU SWITCH -

# 5.1.11 System Variable - PTA PARALLEL I/O PORT -

| Function                      | System Variable | Input and Output | Data                            |  |
|-------------------------------|-----------------|------------------|---------------------------------|--|
| Output port A                 | IOA()           | Output           | Output data A (8 bits)          |  |
| Output port B                 | IOB()           | Output           | Output data B (8 bits)          |  |
| I/O port C                    | IOC()           | I/O              | I/O data C (4 bits)             |  |
| I/O port D                    | IOD()           | I/O              | I/O data D (4 bits)             |  |
| Port C and D I/O switch       | EIO             | I/O              | Port C status Port D status     |  |
|                               |                 |                  | 0: Input Input                  |  |
|                               |                 |                  | 1: Output Input                 |  |
|                               |                 |                  | 2 : Input Output                |  |
|                               |                 |                  | 3 : Output Output               |  |
| External switch (OUTPUT 1, 2) | EX0             | I/O              | OUTPUT 1 status OUTPUT 2 status |  |
|                               |                 |                  | 0: OFF OFF                      |  |
|                               |                 |                  | 1: ON OFF                       |  |
|                               |                 |                  | 2: OFF ON                       |  |
|                               |                 |                  | 3: ON ON                        |  |

# 5.1.12 System Variable - FILTER FUNCTION I/O -

See the sections of System Function FILTER 1, 2, 3, 4 and 5.

# 5.2 System Sub-Routine

PTA has exclusive sub-routines called the system sub-routine executed by the CALL statement. The system sub-routines listed below are available.

| Screen sub-routine                             |                                                        |
|------------------------------------------------|--------------------------------------------------------|
| • Display item deletion:                       | CALL CER(M)                                            |
| • Display item return:                         | CALL CRN(M)                                            |
| • Screen deletion:                             | CALL CFL(M)                                            |
| Character display:                             | CALL DCH(X, Y, text, M [, N])                          |
| • Line drawing:                                | CALL DLN(XØ, YØ, X1, Y1, M [, N])                      |
| • Square drawing:                              | CALL DRC(XØ, YØ, X1, Y1, M [, N])                      |
| • Circle drawing:                              | CALL DCR(X, Y, R, M [, N])                             |
| • Arc drawing:                                 | CALL DAR(XØ, YØ, RØ, W1, W2, M1 [, M3])                |
| • OX drawing:                                  | CALL DJG(X, Y, R, F, M1, M2)                           |
| • Soft key label registration:                 | CALL DEF(M, text)                                      |
| File operation sub-routine                     |                                                        |
| • File opening (reading):                      | CALL OPNI character row variable or character constant |
| • File opening (writing):                      | CALL OPNO character row variable or character constant |
| • File deletion:                               | CALL FDEL character row variable or character constant |
| Data loading:                                  | CALL DALD variable                                     |
| • Data saving:                                 | CALL DASV variable                                     |
| • File closing:                                | CALL CLS                                               |
| ■ GPIB sub-routine (exclusively for the GPIB p | ort)                                                   |
| • Interface clearing:                          | CALL IFC                                               |
| (Switching to the system controller board)     |                                                        |
| • Service request:                             | CALL RSV(M)                                            |
| • Switching to the device board:               | CALL DEV                                               |
| Video plotter sub-routine                      |                                                        |
| Screen hard copy:                              | CALL VPT                                               |
| Interface sub-routine                          |                                                        |
| • Interface control:                           | CALL GPIB (Port No., control item No.)                 |
| Panel sub-routine                              |                                                        |
| • Front panel operation LOCK:                  | CALL PNLL(Ø)                                           |
| Front panel operation LOCK release:            | CALL PNLU(Ø)                                           |
| Waveform memory sub-routine                    |                                                        |
| • Memory copy:                                 | CALL COPY(MØ, M1)                                      |
|                                                |                                                        |

#### 5.2 System Sub-Routine

- Buzzer sub-routine
- Buzzer calling:

CALL BZR

# CAUTION $\triangle$

A parameter set outside the predetermined range by the screen sub-routine results in an error, and in this case, it is not possible to draw pictures.

# 5.2.1 CER, CRN Sub-Routine

#### (1) Function

This controls the deletion and the display return of the character row, graph, scale and marker.

#### (2) Style

CALL \_ CER(MØ) ..... Deletion of item M0 CALL \_ CRN(MØ) ..... Display return of item M0

| MO | Item                                      |
|----|-------------------------------------------|
| 0  | All items                                 |
| 1  | Trace A line term (CH 1, 2)               |
| 2  | Trace B line term (CH 1, 2)               |
| 3  | Measuring condition term (CH 1, 2)        |
| 4  | Frequency term (CH 1, 2)                  |
| 5  | Menu term                                 |
| 6  | Sweep marker term (CH 1, 2)               |
| 7  | Scale A (CH 1, 2)                         |
| 8  | Scale B (CH 1, 2)                         |
| 9  | Waveform A (CH 1, 2)                      |
| 10 | Waveform B (CH 1, 2)                      |
| 11 | Marker A (CH 1, 2)                        |
| 12 | Marker B (CH 1, 2)                        |
| 13 | Marker frequency and clock term (CH 1, 2) |

- M0 represents the numerical value constant or numerical value variable.
- When data is erased or display-returned by this subroutine, the current situation retains until the setting or PTA determined by the subroutine is turned OFF.
- The marker list, Filter analysis result and Resonator analysis result are deleted or restored when M 0 = 0 (all items) is specified.

# 5.2.2 CFL Sub-Routine

#### (1) Function

This deletes all the screen range which corresponds to the specified subtraction.

#### (2) Style

CALL CFL(M1)

| M1 (Screen designation) | Screen No. constituting the deletion target      |
|-------------------------|--------------------------------------------------|
| 0                       | All screens                                      |
| 1                       | 7th screen (PTA screen)                          |
| 2                       | 1st screen (Error message screen)                |
| 3                       | 2nd screen (Directory screen)                    |
| 4                       | 3rd screen (Character screen within the window)  |
| 5                       | 4th screen (Background screen within the window) |
| 6                       | 5th screen (Marker screen)                       |
| 7                       | 6th screen (Marker screen)                       |
| 8                       | 7th screen (PTA screen)                          |
| 9                       | 8th screen (Waveform and condition screen)       |
| 10                      | 9th screen (Waveform and condition screen)       |
| 11                      | 10th screen (Limit line or Waveform screen)      |
| 12                      | 11th screen (Limit line or Waveform screen)      |
| 13                      | 12th screen (Storage waveform screen)            |
| 14                      | 13th screen (Scale screen)                       |
| 15                      | 14th screen (Scale screen)                       |
| 16                      | 15th screen (marker frequency and menu character |
|                         | screen)                                          |
| 17                      | 16th screen (Message screen)                     |

- M1 represents the numerical value constant or numerical value variable.
- This sub-routine temporarily deletes the screen. Therefore, when another set of display conditions are established (for example, the measuring parameter value has been modified, or characters or graphics are displayed), these new conditions are displayed.
- Each screen has preset display priority. When a figure is drawn on the same coordinate of multiple screens, it is displayed by the attribute (color) of the screen which takes the first priority among all the screens used. The screen No. 1 is prioritized first, while the screen No. 16 is prioritized last.

#### 5.2 System Sub-Routine

# 5.2.3 DCH Sub-Routine

#### (1) Function

This displays the character row. (The bottom left of the screen is set as reference.)

#### (2) Style

CALL\_DCH(X,Y,text,M1[,M2]) Normal display/reversed display Screen designation Character row displayed Y coordinate of the header character X coordinate of the header character

| M2 | Line type        |
|----|------------------|
| 0  | Normal display   |
| 1  | Reversed display |

Range of each parameter

|              | Header X coordinate (X) | Header Y coordinate (Y) | Maximum character row (text) |
|--------------|-------------------------|-------------------------|------------------------------|
| Small font 1 | 0 to 632                | 0 to 464                | 80                           |
| Small font 2 | 0 to 628                | 0 to 464                | 53                           |
| Large font 3 | 0 to 624                | 0 to 464                | 40                           |

#### Notes:

- The header X and Y coordinates refer to the bottom left corner position of a character.
- X, Y, M1 and M2 represent the numerical value constant or numerical value variable. text represents the character constant or character row variable.
- M2 can be omitted. However, the default set for M2, when it is omitted, is 0.
- DCHSIZE statement allows setup of the character size (small font/large font).

DCHSIZE 0: Small font 1

DCHSIZE 1: Small font 2

DCHSIZE 2: Large font

• The following remote control command (GPIB command) can move the origin of the drawing coordinate.

```
"GORG_x, y": Moves the origin of the drawing coordinate from the left bottom corner (0, 0) to (x, y).
```

 $-639 \le x \le 639$  $-479 \le y \le 479$ 

### 5.2.4 DLN Sub-Routine

#### (1) Function

This displays the straight line (stroke).

(2) Style

 CALL\_DLN(XØ, YØ, X1, Y1, M1[, M3])

 Line type designation

 Screen designation

 Y coordinate of point, P1

 X coordinate of point, P0

 X coordinate of point, P0

 Y coordinate of point, P0

Point, P<sub>0</sub> (X0, Y0)

| M3 | Line type                     |
|----|-------------------------------|
| 0  | Displayed by an unbroken line |
| 1  | Deleted by an unbroken line   |
| 2  | Displayed by a broken line    |
| 3  | Deleted by a broken line      |

#### Notes:

- X0, Y0, X1, Y1, M1 and M3 represent the numerical value constant or numerical value variable.
- M3 can be omitted. However, the default set for M3, when it is omitted, is 0.
- The following remote control command (GPIB command) can move the origin of the drawing coordinate.

"GORG\_x, y": Moves the origin of the drawing coordinate from the left bottom corner (0, 0) to (x, y).

 $-639 \le x \le 639$  $-479 \le y \le 479$ 

# 5.2.5 DRC Sub-Routine

(1) Function

This displays the square with two specified points set diagonally.

#### (2) Style





| M3 | Line type                     |
|----|-------------------------------|
| 0  | Displayed by an unbroken line |
| 1  | Deleted by an unbroken line   |
| 2  | Displayed by a broken line    |
| 3  | Deleted by a broken line      |

#### Notes:

- X0, Y0, X1, Y1, M1 and M3 represent the numerical value constant or numerical value variable.
- M3 can be omitted. However, the default set for M3, when it is omitted, is 0.
- When P0 (X0, Y0) and P1 (X1, Y1) are on the same coordinate, no square is displayed.
- The following remote control command (GPIB command) can move the origin of the drawing coordinate.

"GORG\_x, y": Moves the origin of the drawing coordinate from the left bottom corner (0, 0) to (x, y). -639  $\leq$  x  $\leq$  639

 $-479 \le y \le 479$ 

Г

### 5.2.6 DCR Sub-Routine

#### (1) Function

This displays the circle.

#### (2) Style

CALL\_DCR(X,Y,R,M1[,M3]) Line type designation Screen designation Radius (0 <) Y coordinate of the center X coordinate of the center



| M3 | Line type                     |
|----|-------------------------------|
| 0  | Displayed by an unbroken line |
| 1  | Deleted by an unbroken line   |
| 2  | Displayed by a broken line    |
| 3  | Deleted by a broken line      |

#### Notes:

- X, Y, R, M1 and M3 represent the numerical value constant or numerical value variable.
- M3 can be omitted. However, the default set for M3, when it is omitted, is 0.
- The following remote control command (GPIB command) can move the origin of the drawing coordinate.

"GORG\_x, y": Moves the origin of the drawing coordinate from the left bottom corner (0, 0) to (x, y).

 $-639 \le x \le 639$  $-479 \le y \le 479$ 

# 5.2.7 DAR Sub-Routine

(1) Function

This displays the arc.

(2) Style





| M3 | Line type                     |
|----|-------------------------------|
| 0  | Displayed by an unbroken line |
| 1  | Deleted by an unbroken line   |
| 2  | Displayed by a broken line    |
| 3  | Deleted by a broken line      |

- X, Y, R, W1, W2, M1 and M3 represent the numerical value constant or numerical value variable.
- M3 can be omitted. However, the default set for M3, when it is omitted, is 0.
- The following remote control command (GPIB command) can move the origin of the drawing coordinate.
   "GORG\_x, y": Moves the origin of the drawing coordinate from the left bottom corner

   (0, 0) to (x, y).

   -639 ≤ x ≤ 639

   -479 ≤ y ≤ 479

### 5.2.8 DEF Sub-Routine

(1) Function

This registers the menu label (name) at the soft key menu. When the PTA menu (3/4) is displayed, the label registered by this sub-routine is indicated.

#### (2) Style

CALL\_DEF(M1,text)

Label comprising a maximum of 10 characters Soft key Nos. (1 to 6)

#### Notes:

- M represents the numerical value constant or numerical value variable.
- "text" represents the character constant or character row variable.
- The label registered by this sub-routine is effective until PTA is turned OFF.

# 5.2.9 OPNI, OPNO and FDEL Sub-Routine

#### (1) Function

This opens the data file to execute data writing in and reading from a storage device (internal memory, FD or PMC), as well as deletes the data file created.

#### (2) Style

| CALL - OPNI Character row variable or character constant | : File opening to read data  |
|----------------------------------------------------------|------------------------------|
| CALL _ OPNO Character row variable or character constant | : File opening to write data |
| CALL - FDEL Character row variable or character constant | : Data file deletion         |

- The data file name, which begins with a %, constitutes a row of up to six alphanumeric characters including the %.
- Do not eject the FD or PMC while the data file is open.
- This sub-routine cannot be applied to the PTA program file located.
#### 5.2 System Sub-Routine

## 5.2.10 DALD and DASV Sub-Routine

#### (1) Function

This loads (DALD) the data stored on the storage device (internal memory, FD or PMC), or saves (DASV) the data.

#### (2) Style

CALL ... DALD ... input variable: Data loading from the data file

CALL \_ DASV \_ variable: Data saving to the data file

#### Notes:

- The data file is created as the sequential file. Therefore, load the data in the same order as that of data saving.
- Saving different data types (for example, numerical value type data and character type data) in a single data file is also possible. However, when the data type used for saving and the input variable type used for loading cannot substitute for each other, saving such data results in an error.

#### (3) Program example

| 1Ø  | REM "*** DATA FILE ***" |              | Execution results |
|-----|-------------------------|--------------|-------------------|
| 2Ø  | CALL OPNO"%DATA"        |              | RES.=4            |
| 3Ø  | FOR C=2 TO 1Ø           | Saving to    | RES.=9            |
| 4Ø  | D=C * C                 | the file     | RES.=16           |
| 5Ø  | CALL DASV D             |              | RES.=25           |
| 6Ø  | NEXT C                  |              | RES.=36           |
| 7Ø  | CALL CLS                |              | RES.=49           |
| 8Ø  | CALL OPNI"%DATA"        |              | RES.=64           |
| 9Ø  | FOR C=2 TO 1Ø           |              | RES.=81           |
| 1ØØ | CALL DALD D             | Loading from | RES.=1ØØ          |
| 11Ø | PRINT "RES.=",D         | the file     |                   |
| 12Ø | NEXT C                  |              |                   |
| 13Ø | CALL CLS                |              |                   |
| 14Ø | STOP                    |              |                   |

### 5.2.11 CLS Sub-Routine

(1) Function

This closes the data file opened. This function is shared for data saving and loading.

(2) Style

CALL \_ CLS

## 5.2.12 IFC Sub-Routine

(1) Function

The GPIB port, functioning as the system controller board, outputs the interface clearing signal to the device connected on the GPIB bus.

(2) Style

CALL \_ IFC

## 5.2.13 RSV Sub-Routine

(1) Function

The GPIB port, when used as the device port, sends the service request to the controller.

#### (2) Style

CALL  $\_$  RSV (M)

| Μ | PTA Event Status Register |   |   |          |   |   |   |     |  |
|---|---------------------------|---|---|----------|---|---|---|-----|--|
|   | MSE                       | 3 |   |          |   |   | I | _SB |  |
| 0 | ×                         | Х | Х | Х        | 0 | 0 | 0 | 1   |  |
| 1 | ×                         | Х | X | ×        | 0 | 0 | 1 | 0   |  |
| 2 | ×                         | Х | × | $\times$ | 0 | 0 | 1 | 1   |  |
| 3 | ×                         | Х | × | ×        | 0 | 1 | 0 | 0   |  |
| 4 | ×                         | Х | × | $\times$ | 0 | 1 | 0 | 1   |  |
| 5 | ×                         | Х | × | ×        | 0 | 1 | 1 | 0   |  |
| 6 | ×                         | Х | × | ×        | 0 | 1 | 1 | 1   |  |
| 7 | ×                         | Х | × | $\times$ | 1 | 0 | 0 | 0   |  |
| 8 | ×                         | × | Х | ×        | 1 | 0 | 0 | 1   |  |
| 9 | ×                         | × | Х | Х        | 1 | 0 | 1 | 0   |  |

The PTA event status register is defined as the bit 1 extended status of the status byte. Therefore, when the data shown on the left are set for the PTA event status register, bit 1 of the status byte is indirectly set as the summary bit. Moreover, as the logical sum of all the bits of the status byte, the RQS bit (bit 6) is set to send the service request to the controller. The GPIB commands used to load the status byte and the PTA event status register from the external controller are \*STB? and ESRI? respectively.

The  $\times$  refers to a bit that remains unchanged.

#### Notes:

- M represents the numerical value constant or numerical value variable.
- Only effective when the GPIB port functions as the device port.

## 5.2.14 DEV Sub-Routine

#### (1) Function

Executing this sub-routine when the GPIB port is functioning as the system controller port switches the GPIB port to the device port.

#### (2) Style

CALL \_ DEV

#### 5.2 System Sub-Routine

## 5.2.15 Interface Control Sub-Routine (GPIB)

(1) Function

This enables the designated port to perform the following tasks; sending of "Interface Clear" (IFC), sending of "Remote" (REN), setup of "Return to Local" (RTL), sending of "Local" (LCL), sending of "Device Clear" (DCL), sending of "Local Lockout" (LLO) and sending of "Device Trigger" (DTR).

#### (2) Style

| CALL _ GPIB (1,                      | Ø)            | Sending of IFC |  |  |  |
|--------------------------------------|---------------|----------------|--|--|--|
| CALL _ GPIB (1,                      | 1[, Address]) | Setup of REN   |  |  |  |
| CALL _ GPIB (1,                      | 2)            | Sending of RTL |  |  |  |
| CALL _ GPIB (1,                      | 3[, Address]) | Sending of LCL |  |  |  |
| CALL _ GPIB (1,                      | 4[, Address]) | Sending of DCL |  |  |  |
| CALL _ GPIB (1,                      | 5)            | Sending of LLO |  |  |  |
| CALL - GPIB (1,                      | 6, Address)   | Sending of DTR |  |  |  |
| Address: 0 to 30 device GPIB address |               |                |  |  |  |

Notes:

- Address represent numerical value constant or numerical value variable.
- Operations in each sub-routine are as follows.

IFC:

- This turns On the IFC line and initializes the interface function of all the devices connected.
- This initializes only the interface function, without affecting other device functions.
- No talkers or listeners are canceled.
- This does not affect the SRQ line.

#### REN:

- Omitting [, Address] turns On the REN line. Following this, when individual devices are designated as the listener, they switch into the remote control status.
- Specifying [, Address] turns On the REN line and designates the devices specified by [, Address} as the listener, switching them into the remote control status.
- This task can be executed only when the GPIB port is functioning as the system controller port.

#### RTL:

• The GPIB port switches the measuring instrument to the local control status. (Equivalent to the status where the LOCAL key is pressed.)

#### LCL:

- Omitting [, Address] turns OFF the REN line, switching all the devices into the local control status.
- Specifying [, Address] cancels all the listeners, and then, set all the devices specified by [, Address] as the listener, switching them into the local control status. The REN line remains unchanged.
- This task can be executed only when the GPIB port is functioning as the system controller port.

#### DCL:

- Omitting [, Address] prompts sending of "DCL" and initializes the function of all the devices on GPIB.
- Specifying [, Address] prompts sending of "SDC" (Selected Device Clear) and initializes the function of devices specified by [, Address].
- This task can be executed only when the GPIB port is functioning as the system controller port.

#### LLO:

- This sets the switching from remote to local of all the devices on GPIB as ineffective. This disables the LOCAL key on the panel to switch devices on GPIB into the local control status
- Switching from PTA using the REN and LCL instructions is possible.
- This status is canceled by the LCL instructions with its [, Address] specification omitted.
- This task is effective only when the GPIB port is functioning as the system controller port.

#### DTR:

- This sends out the specified device trigger. The specified devices commence preset operations.
- This task is effective only when the specified port is functioning as the system controller port.

## 5.2.16 PNLU and PNLL Sub-Routine

#### (1) Function

This sets up LOCK/UNLOCK of the front panel when PTA is ON.

#### (2) Style

| CALL 🗆 PNLU (Ø) | Front panel UNLOCK |
|-----------------|--------------------|
| CALL _ PNLL (Ø) | Front panel LOCK   |

#### Note:

Switching the soft keys F1 - F6, SHIFT key, ten key and LOCAL key on the front panel into the LOCK status is not possible.

## 5.2.17 COPY Sub-Routine

(1) Function

This copies the waveform memory (copy source) data specified onto other waveform memory types (copy destination).

#### (2) Style

CALL \_ COPY(MØ,M1)

Waveform memory No. serving as the copying destination Waveform memory No. serving as the copying source

| M0, M1 | Waveform memory       | System variable name | Туре        |
|--------|-----------------------|----------------------|-------------|
| 0      | CH1 waveform memory A | XMA()                | Real number |
| 1      | CH1 waveform memory B | XMB ( )              | Real number |
| 2      | CH1 S memory A        | SMA()                | Real number |
| 3      | CH1 S memory B        | SMB()                | Real number |
| 4      | CH1 image memory A    | IMA()                | Real number |
| 5      | CH1 image memory B    | IMB()                | Real number |
| 6      | (Unused)              |                      |             |
| 7      | (Unused)              |                      |             |
| 8      | CH2 waveform memory A | XMA()                | Real number |
| 9      | CH2 waveform memory B | XMB ( )              | Real number |
| 10     | CH2 S memory A        | SMA()                | Real number |
| 11     | CH2 S memory B        | SMB()                | Real number |
| 12     | CH2 image memory A    | IMA()                | Real number |
| 13     | CH2 image memory B    | IMB()                | Real number |

#### Note:

- The contents of M0 are copied onto M1. The M0 contents remain unchanged. The older M1 contents will be lost.
- M0 and M1 uses the numerical constant or variable.
- See System Variable under Chapter 5 for the details of the memory copy.

## 5.2.18 DJG Sub-Routine

(1) Function

This subroutine draws  $\bigcirc$  or  $\times$  in double lines at the specified coordinates. Alternately, it deletes  $\times$  to display  $\bigcirc$ , or deletes  $\bigcirc$  to display  $\times$ .

#### (2) Format

CALL DJG (X, Y, R, F, M1, M2)



| Drawing function (F) | Description                                                                   |
|----------------------|-------------------------------------------------------------------------------|
| 0                    | Clears an existing $\times$ and displaying $\bigcirc$ at the same coordinates |
| 1                    | Clears an existing $\bigcirc$ and displaying $\times$ at the same coordinates |

#### Notes:

- For X, Y, R, F, M1, and M3, use a numerical constant or variable.
- If M1 is set to -1,  $\bigcirc$  is neither displayed or deleted.
- If M2 is set to -1,  $\times$  is neither displayed or deleted.
- The origin of drawing coordinates may be moved.

## 5.2.19 BZR Sub-Routine

(1) Function

This subroutine calls the buzzer once.

(2) Format

CALL BZR

The system function enables high-speed extraction and calculation of feature points, targeting internal measuring memory (memory where the measuring data serving as the source for the waveform memory data are stored). Therefore, a value exists as the function calculation result.

| System F                   | unction                 | Function                                                            |
|----------------------------|-------------------------|---------------------------------------------------------------------|
| Maximum value              | MAX (M, P0, P1, N)      | Used to calculate the maximum value between P0 and OP1.             |
| Minimum value              | MIN (M, P0, P1, N)      | Used to calculate the minimum value between P0 and OP1.             |
| Frequency of the specified | BNDL (M, P0, L, N)      | Used to begin search starting from P0 and calculate                 |
| measuring value 1          |                         | the frequency of the specified measuring value.                     |
| Frequency of the specified | BNDH (M, P0, L, N)      | Used to begin search starting from P0 and calculate                 |
| measuring value 2          |                         | the frequency of the specified measuring value.                     |
| Frequency of the specified | MEAS (M, P0, L, N)      | Used to begin search starting from P0 and calculate                 |
| measuring value 3          |                         | the frequency of the specified measuring value.                     |
| Ripple 1                   | RPL1 (P0, P1, N[, R])   | Used to calculate the ripple between P0 and P1.                     |
| Ripple 2                   | RPL2 (P0, P1, N[, R])   | Used to calculate the ripple between P0 and P1.                     |
| Ripple 3                   | RPL3 (P0, P1, N[, R])   | Used to calculate the ripple between P0 and P1.                     |
| Ripple 4                   | RPL4 (P0, P1, N[, R])   | Used to calculate the ripple between P0 and P1.                     |
| Pole 1                     | POLL (M, P0, L, N[, R]) | Used to begin search starting from P0 and calculate the pole (dip). |
| Pole 2                     | POLH (M, P0, L, N[, R]) | Used to begin search starting from P0 and calculate the pole (dip). |
| Extreme-high value         | PLRH (M, P0, N[, R])    | Used to begin search starting from P0 and calculate                 |
|                            |                         | the adjacent extreme-high value.                                    |
| Extreme-low value          | PLRL (M, P0, N[, R])    | Used to begin search starting from P0 and calculate                 |
|                            |                         | the adjacent extreme-low value.                                     |
| Filter 1                   | FILTER1 (N)             | Used to calculate the insertion loss, bandwidth and ripple.         |
| Filter 2                   | FILTER2 (N)             | Used to calculate the maximum delay, the difference between the     |
|                            |                         | maximum and minimum delay and center frequency delay.               |
| Filter 3                   | FILTER3 (N)             | Used to calculate the attenuation bandwidth and attenuation.        |
| Filter 4                   | FILTER4 (N)             | Used to calculate the attenuation bandwidth and attenuation.        |
| Filter 5                   | FILTER5 (N)             | Used to calculate the minimum attenuation value.                    |
| Group delay                | GPDLY (P0, P1, CH[, E]) | Used to calculate the group delay time at the specified             |
|                            |                         | measuring point.                                                    |
| Status byte loading        | GST (G)                 | Reads the status byte from the external equipment of                |
|                            |                         | the specified address.                                              |

# 

- As the system function targets the internal measuring memory, the value input (P0 and P1) to each function must be specified as the point value on the memory.
- P0, P1, L, N and R, representing the numerical value constant or numerical value variable, are input parameters.
- M, which represents the numerical value variable, is an output parameter.
- N, N1 and N2, which constitute the parameters to specify the waveform memory, represent the numerical value constant or numerical value variable.
- G specifies the GPIB address of the device.

# CAUTION A

The internal measuring memory constitutes the target of actual execution in the system function calculation to specify the waveform memory. The both data generally comply with each other under normal measurements. (When the measuring format is LOGZ, the linear data and the logarithm data are stored on the internal measuring memory and the waveform memory respectively.) However, when the data on the waveform memory are written over by system functions (such as XMA, XMB, SMA and SMB), the modified contents are not reflected upon the internal measuring memory, causing a discrepancy between the data on the waveform memory and the data on the internal measuring memory.

Even under this situation, the internal measuring memory constitutes the target of actual execution of the system function calculation. See the section of System Variable under Chapter 5 for more details of the waveform memory and the internal measuring memory. Under this chapter, the following section provides explanations on the assumption that the data on the waveform memory and the data on the internal measuring memory comply with each other.

| N,N1,N2 | Waveform memory A     | Reference setup format and resolution          |
|---------|-----------------------|------------------------------------------------|
| 0       | CH1 waveform memory A | Measuring format and resolution of CH1 TRACE-A |
| 1       | CH1 waveform memory B | Measuring format and resolution of CH1 TRACE-B |
| 2       | CH1 S memory A        | Measuring format and resolution of CH1 TRACE-A |
| 3       | CH1 S memory B        | Measuring format and resolution of CH1 TRACE-B |
| 4       | CH1 image memory A    | Measuring format and resolution of CH1 TRACE-A |
| 5       | CH1 image memory B    | Measuring format and resolution of CH1 TRACE-B |
| 6       | (Unused)              |                                                |
| 7       | (Unused)              |                                                |
| 8       | CH2 waveform memory A | Measuring format and resolution of CH2 TRACE-A |
| 9       | CH2 waveform memory B | Measuring format and resolution of CH2 TRACE-B |
| 10      | CH2 S memory A        | Measuring format and resolution of CH2 TRACE-A |
| 11      | CH2 S memory B        | Measuring format and resolution of CH2 TRACE-B |
| 12      | CH2 image memory A    | Measuring format and resolution of CH2 TRACE-A |
| 13      | CH2 image memory B    | Measuring format and resolution of CH2 TRACE-B |

#### Notes:

The output of the measuring value as a result of function calculation and the output of calculation of the measuring value use, as reference, the measuring format and resolution shown above which correspond to the relevant wave-form memory. The data output is the fixed-point real type, like the marker value. Moreover, the specified measuring value and specified resolution (L, R) are interpreted as the unit in compliance with the above measuring format and resolution.

# CAUTION $\triangle$

When the measuring format is LOGZ, the LINZ (linear value) is stored on the internal measuring memory. Therefore, a large expected value of the function calculation result may result in an overflow when it is converted into the fixed-point real type data.

## 5.3.1 MAX Function

(1) Function

This calculates the maximum value and the measuring point within the waveform memory range specified.

```
(2) Style
```

```
MAX (M, PØ, P1, N)
Waveform memory designation
Range designation (P0<P1)
Measuring point of the maximum value
Maximum value
```

#### Note:

When the same maximum values exist in multiple numbers, the first point of the maximum value is stored on M.

(3) Program example: Calculation of the maximum level of the TRACE-A on the waveform memory CH1.

```
1Ø REM"MAX (M, PØ, P1, N)"
2Ø GMAX=MAX (M, Ø, 5ØØ, Ø)
3Ø'
4Ø PRINT "Maximum Level=",GMAX,"dB"
5Ø STOP
Maximum Level=-2Ø.45dB
```

## 5.3.2 MIN Function

```
(1) Function
```

This calculates the minimum value and the measuring point within the waveform memory range specified.

```
(2) Style
```

MIN(M, PØ, P1, N) Waveform memory designation Range designation (P0<P1) Measuring point of the minimum value

Minimum value

#### Note:

When the same minimum values exist in multiple numbers, the first point of the minimum value is stored on M.

(3) Program example: Calculation of the minimum level of the TRACE-A on the waveform memory CH1.

```
1Ø GMIN=MIN (M, Ø, 5ØØ, Ø)
2Ø'
3Ø PRINT"Min Level=", GMIN,"dB at", M
4Ø STOP
```

## 5.3.3 RPL1 and RPL2 Function

(1) Function

This calculates ripple 1 and ripple 2 within the specified range of the specified waveform memory. Ripple 1: Calculates the difference between the largest local maximum and the smallest minimum values. Ripple 2: Calculates the maximum value of difference between the neighboring local maximum and minimum.

```
(2) Style
```

```
RPL1(PØ,P1,N[,R])

RPL2(PØ,P1,N[,R])

Ripple resolution

Waveform memory designation

Range designation (P0<P1)
```



#### Note:

When the difference between the adjacent extreme-high and extreme-low levels is smaller than R, this is not considered a ripple.

#### (3) Program example

Calculate ripple 1 between the measuring points of 100 and 300 on CH1 TRACE-A. However, set the resolution at 0.2 dB in this case.

```
10 RP=RPL1 (100, 300, 0, 0.2)
20 PRINT"RPL1", RP,"dB"
30 STOP
```

## 5.3.4 RPL3 Function

(1) Function

This function calculates, as ripple 3, the maximum value of difference between the straight line connecting two neighboring local maximum points and the local minimum point located between them, in the setup range of specified waveform memory as shown by the figure below.

(2) Style

RPL3 ( PØ, P1, N[, R] ) Ripple resolution Waveform memory designation Range designation (P0<P1)



#### Note:

When the difference between the adjacent extreme-high and extreme-low levels is smaller than R, this is not considered a ripple.

#### (3) Program example

Calculate ripple 3 between the measuring points of 50 and 450 on CH1 TRACE-A. However, set the resolution at 0.1 dB in this case.

1Ø RP=RPL3 (5Ø, 45Ø, Ø, Ø.1) 2Ø PRINT"RPL3=", RP,"dB" 3Ø STOP

## 5.3.5 RPL4 Function

#### (1) Function

This designates, as ripple 4, the difference between the waveform memory data and what corresponds to the maximum extreme-high point and the minimum extreme-low point of the absolute value data calculated by differentiating the waveform memory data in the frequency axial in the preset range of the specified waveform memory.

(2) Style



#### Note:

When the difference between the differentiated extreme-high and extreme-low points is smaller than L, this is not considered a ripple.

#### Calculation procedures:

- 1. Calculate all the data on the difference to the adjacent points concerning individual measuring data of the waveform memory (X).
- 2. Calculate the absolute values for individual data calculated in 1, and set data based on the calculation results as waveform Y.
- 3. Calculate the maximum extreme-high point (generally, referring to the point where the waveform memory (X) experiences the steepest tilt) and the minimum extreme-low point (generally, referring to the point where the waveform memory (X) experiences the least steep tilt) of the waveform Y.
- 4. Calculate the waveform memory (X) data of Ymax and Ymin, which correspond to the extreme-high point and extreme-low point calculated in 3 respectively.
- 5. Designated, as ripple 4 (function result), the Ymax-Ymin absolute value.

## 5.3.6 BNDL, BNDH and MEAS Function

#### (1) Function

This calculates the frequency of the specified measuring value with a point set as the starting point, in the specified waveform memory. When no measuring point which corresponds to the specified measuring value exists, the frequency is calculated by directly interpolating from the measuring points located before and behind.

#### (2) Style

```
BNDL (M, PØ, L, N)
BNDH (M, PØ, L, N)
MEAS (M, PØ, L, N)
Waveform memory designation
Specified measuring value
Point of search start
Measuring point of the specified measuring value
Frequency (or time) of the specified measuring value
```

#### When specifying N = 0 to 5:

The frequency of the specified measuring value is calculated from the CH1 preset frequency.

#### When specifying N = 8 to 13:

The frequency of the specified measuring value is calculated from the CH2 preset frequency.

#### Note:

BNDH and MEAS functions fulfill the same performance.



$$\left\{ \begin{matrix} \mathsf{BNDL} \\ \mathsf{BNDH} \\ \mathsf{MEAS} \end{matrix} \right\} = \mathsf{f}(\mathsf{Pn}) + \frac{\mathsf{f}(\mathsf{Pn+1}) - \mathsf{f}(\mathsf{Pn})}{\mathsf{A}(\mathsf{Pn}) - \mathsf{A}(\mathsf{Pn+1})} \times \{\mathsf{A}(\mathsf{Pn}) - \mathsf{L}\}$$

#### Note:

When no specified measuring value exists, M equals zero for BLDL, while M equals 1,000 for BNDH and MEAS.

#### (3) Program example:

Calculate the bandwidth at -20 dB level of the CH1 TRACE-A. (searched from the center position)

 $1\emptyset$  L=-2Ø .....indicating -20 dB.

2Ø FH=BNDL (ML, 25Ø, L, Ø)
3Ø FH=BNDH (MH, 25Ø, L, Ø)
4Ø BW=(FH-FL)/1ØØØ
5Ø PRINT"BW=", BW, "KHz"
6Ø STOP

## 5.3.7 PLRH and PLRL Function

#### (1) Function

This calculates the first extreme-high and extreme-low values and the points where they are measured, with a point set as the starting point, in the specified waveform memory.

#### (2) Style

```
PLRH(M,PØ,N[,R]):extreme-high point
PLRL(M,PØ,N[,R]):extreme-low point
```

Ripple resolution Measuring memory designation Point of search start Measuring points of the extreme-high and extreme-low values

Extreme-high and extreme-low values



#### Notes:

- When the difference between the adjacent extreme-high and extreme-low levels is smaller than R, it is not considered a point of inflection. When R is omitted, R is set at a default of zero.
- When no extreme-high or extreme-low point exists, M equals 1,000, and the value measured at each point becomes the value for the point.

(3) Program example

Calculate the extreme-high value located to the right of CH1 TRACE-A point of 250. However, set the resolution at 3 dB in this case.

```
1Ø PL=PLRH (M, 25Ø, Ø, 3)
2Ø PRINT"Peak Level=", PL, "dB at", M
3Ø STOP
```

## 5.3.8 POLL and POLH Function

(1) Function

As shown by the figure below, this calculates the pole located in the measuring range which comes below the specified measuring value with a point set as the staring point, in the specified waveform memory.

(2) Style



#### Notes:

- A failure to detect a pole in the POLL function results in M equaling zero, and the value measured at point zero is set as POLL.
- A failure to detect a pole in the POLH function results in M equaling 1,000, and the value measured at this point is set as POLH.
- When the difference between the adjacent extreme-high and extreme-low levels is smaller than R, the extreme point level in this case is not considered a pole.

#### (3) Program example

Search and calculate the pole level smaller than -60 dB in the range located to the left of point, 250, within CH1 TRACE-A. However, set the resolution at 1 dB in this case.

```
1Ø PL=POLL (M, 25Ø, -6Ø, Ø, 1)
2Ø PRINT"Poll Level=", PL, "dB at", M
3Ø STOP
```

## 5.3.9 FILTER 1 Function

(1) Function

This calculates the insertion loss, bandwidth (three), ripple and center frequency of bandwidth 1 within the specified waveform memory. Input/output both use the system variable FI1(\*)/FO1(\*).

Waveform memory designation

(2) Style

```
Numerical value type variable name = FILTER1 (N)
```

Dummy

Measuring format: The data measured by LOGMAG (logarithmic amplitude) constitute the execution target.

FI1 (), FO1 (): Numerical value type system array variables (the initial value set at zero)

| FI1 (0)           | This specifies the nominal center frequency (Hz) of the filter.                                  |        |  |
|-------------------|--------------------------------------------------------------------------------------------------|--------|--|
| 111(0)            | Numerical value type constant                                                                    |        |  |
| <b>FI1</b> (1)    | This specifies the reference used to calculate the insertion loss.                               | Input  |  |
| $\Gamma\Pi(1)$    | 0: Value measured of the nominal center frequency 1: Maximum value measured                      | mput   |  |
| EI1 (2)           | This specifies the reference for bandwidth.                                                      | I      |  |
| FII (2)           | 0: Nominal center frequency point 1: Maximum point of value measured                             | Input  |  |
| EI1 (2)           | This specifies the difference 1 from the reference value to calculate the bandwidth.             | Incore |  |
| FII (5)           | Numerical value type constant (When the difference is zero, bandwidth 1 is not                   | Input  |  |
|                   | calculated.)This specifies the difference 2 from the reference value to calculate the bandwidth. |        |  |
| FII (4)           | Numerical value type constant (When the difference is zero, bandwidth 2 is not calculated.)      | Input  |  |
| FI1 (5)           | This specifies the difference 3 from the reference value to calculate the bandwidth.             |        |  |
| FII (5)           | Numerical value type constant (When the difference is zero, bandwidth 3 is not calculated.)      | Input  |  |
| FI1 (6)           | Unused (Specify zero at all times )                                                              | Input  |  |
|                   |                                                                                                  | input  |  |
| FI1 (7)           | This specifies the frequency at which to start the ripple search.                                |        |  |
| 111(7)            | Numerical value type constant                                                                    | mput   |  |
| $\mathbf{FI1}(8)$ | This specifies the frequency at which to end the ripple search.                                  | Turnet |  |
| 111 (0)           | Numerical value type constant                                                                    | Input  |  |
| EI1 (0)           | This specifies the ripple resolution.                                                            | Innut  |  |
| FII (9)           | Numerical value type constant                                                                    | Input  |  |

| FO1 (0)  | Insertion loss                  | Output |
|----------|---------------------------------|--------|
| FO1 (1)  | fL of bandwidth 1               | Output |
| FO1 (2)  | fн of bandwidth 1               | Output |
| FO1 (3)  | BW of bandwidth 1               | Output |
| FO1 (4)  | fL of bandwidth 2               | Output |
| FO1 (5)  | fн of bandwidth 2               | Output |
| FO1 (6)  | BW of bandwidth 2               | Output |
| FO1 (7)  | fL of bandwidth 3               | Output |
| FO1 (8)  | fH of bandwidth 3               | Output |
| FO1 (9)  | BW of bandwidth 3               | Output |
| FO1 (10) | Center frequency of bandwidth 1 | Output |
| F01 (11) | Ripple                          | Output |

## FILTER 1

<Input>



- FI1(1): When the insertion reference equals zero → Output to the insertion loss of the nominal center frequency or F01(0).
   When the insertion reference equals one → Output to the minimum insertion loss or F01(0).
- FI1(2): When the bandwidth reference equals zero  $\rightarrow$  The insertion loss of the nominal center frequency serves as the reference for bandwidth calculation.

When the bandwidth reference equals one  $\rightarrow$  The minimum insertion loss serves as the reference for bandwidth calculation.

• When the bandwidth, BW1, equals 3 dB, set FI1(3) at 3. This also applies to FI1(4) and FI1(5). When FI1(3) equals zero, the bandwidth is not calculated.

#### <Output>



## 5.3.10 FILTER 2 Function

(1) Function

This calculates the maximum DELAY, minimum DELAY and maximum DELAY-minimum DELAY within the specified range of the specified waveform memory, as well as the DELAY of the nominal center frequency.

(2) Style

```
Numerical value type variable name = FILTER2(N)
```

Waveform memory designation

Dummy

Measuring format: The data measured by DELAY (group delay) constitute the execution target.

| FI2 ( ), FO2 ( ): | Numerical val | e type system array | variables (the initia | l value set at zero) |
|-------------------|---------------|---------------------|-----------------------|----------------------|
|-------------------|---------------|---------------------|-----------------------|----------------------|

| FI2 (0) | This specifies the nominal center frequency. Numerical type constant           | Input  |
|---------|--------------------------------------------------------------------------------|--------|
| FI2 (1) | This specifies the frequency at which to start search. Numerical type constant | Input  |
| FI2 (2) | This specifies the frequency at which to end search. Numerical type constant   | Input  |
| FO2 (0) | Maximum DELAY                                                                  | Output |
| FO2 (1) | Minimum DELAY                                                                  | Output |
| FO2 (2) | Maximum-Minimum DELAY                                                          | Output |
| FO2 (3) | DELAY of the nominal center frequency                                          | Output |

N: Same as the FILTER 1 function.



## 5.3.11 FILTER 3 Function

(1) Function

This calculates the bandwidth (three) in the specified waveform memory as well as maximum measuring value (five) within a specified range.

(2) Style

```
Numerical value type variable name = FILTER3(N)

Waveform memory designation

Dummy
```

Measuring format: The data measured by LOGMAG (logarithmic amplitude) constitute the execution target.

| FI3 ( ), FO | 03 ( ): | Numerical | value type sys | tem array | variables | (the initial | value set a | at zero) |
|-------------|---------|-----------|----------------|-----------|-----------|--------------|-------------|----------|
|-------------|---------|-----------|----------------|-----------|-----------|--------------|-------------|----------|

| EI2 (0)           | This specifies the reference for bandwidth.                                                   |        |  |  |
|-------------------|-----------------------------------------------------------------------------------------------|--------|--|--|
| F15 (0)           | 0: Nominal center frequency point 1: Maximum point of value measured                          | mput   |  |  |
| $\mathbf{EI2}(1)$ | This specifies the difference 1 from the reference value to calculate the bandwidth.          |        |  |  |
| F15 (1)           | Numerical value type constant (When the difference is zero, the bandwidth is not calculated.) | mput   |  |  |
|                   | This specifies the difference 2 from the reference value to calculate the bandwidth.          | Innut  |  |  |
| F15 (2)           | Numerical value type constant (When the difference is zero, the bandwidth is not calculated.) |        |  |  |
|                   | This specifies the difference 3 from the reference value to calculate the bandwidth.          | Tanat  |  |  |
| F15 (2)           | Numerical value type constant (When the difference is zero, the bandwidth is not calculated.) | Input  |  |  |
|                   | This specifies frequency 1 at which to start search.                                          | Incont |  |  |
| F13 (4)           | Numerical value type constant                                                                 | Input  |  |  |
|                   | This specifies frequency 1 at which to end search.                                            | Input  |  |  |
| F13 (5)           | Numerical value type constant                                                                 |        |  |  |
|                   | This specifies frequency 2 at which to start search.                                          | T /    |  |  |
| F13 (6)           | Numerical value type constant                                                                 | Input  |  |  |
|                   | This specifies frequency 2 at which to end search.                                            | Input  |  |  |
| F13 (7)           | Numerical value type constant                                                                 |        |  |  |
|                   | This specifies frequency 3 at which to start search.                                          | Tara d |  |  |
| F13 (8)           | Numerical value type constant                                                                 | Input  |  |  |
|                   | This specifies frequency 3 at which to end search.                                            | Input  |  |  |
| F13 (9)           | Numerical value type constant                                                                 |        |  |  |
|                   | This specifies frequency 4 at which to start search.                                          | т.,    |  |  |
| F13 (10)          | Numerical value type constant                                                                 | Input  |  |  |
|                   | This specifies frequency 4 at which to end search.                                            | T /    |  |  |
| F13 (11)          | Numerical value type constant                                                                 | Input  |  |  |
| EI2 (12)          | This specifies frequency 5 at which to start search.                                          | T. A   |  |  |
| F13 (12)          | Numerical value type constant                                                                 | Input  |  |  |
| EI2 (12)          | This specifies frequency 5 at which to end search.                                            | Tara d |  |  |
| F13 (13)          | Numerical value type constant                                                                 | Input  |  |  |

| FO3 (0) | Bandwidth 1              | Output |
|---------|--------------------------|--------|
| FO3 (1) | Bandwidth 2              | Output |
| FO3 (2) | Bandwidth 3              | Output |
| FO3 (3) | Maximum value measured 1 | Output |
| FO3 (4) | Maximum value measured 2 | Output |
| FO3 (5) | Maximum value measured 3 | Output |
| FO3 (6) | Maximum value measured 4 | Output |
| FO3 (7) | Maximum value measured 5 | Output |

N: Same as FILTER 1 function.

The nominal center frequency is specified by FI1(0).

# FILTER 3 </br>





## 5.3.12 FILTER 4 Function

(1) Function

This calculates the bandwidth (three) within the specified waveform memory.

(2) Style

```
Numerical value type variable name = FILTER4(N)
```

Dummy

Measuring format: The data measured by LOGMAG (logarithmic amplitude) constitute the execution target.

Specifled waveform memory

| FI4 (), FO4 ( | ): | Numerical | value typ | e system | array | variables | (the | initial | value | set at | zero | ) |
|---------------|----|-----------|-----------|----------|-------|-----------|------|---------|-------|--------|------|---|
|---------------|----|-----------|-----------|----------|-------|-----------|------|---------|-------|--------|------|---|

| FI4 (0)                                                                                                                                                                                       | FI4 (0)This specifies the reference for bandwidth.<br>0: Nominal center frequency point1: Maximum point of value measured                                                             |        |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| FI4 (1) This specifies the difference 1 from the reference value to calculate the bandwidth.<br>Numerical value type constant (When the difference is zero, the bandwidth is not calculated.) |                                                                                                                                                                                       |        |  |  |
| FI4 (2) This specifies the difference 2 from the reference value to calculate the bandwidth.<br>Numerical value type constant (When the difference is zero, the bandwidth is not calculated.) |                                                                                                                                                                                       |        |  |  |
| FI4 (3)                                                                                                                                                                                       | This specifies the difference 3 from the reference value to calculate the bandwidth.<br>Numerical value type constant (When the difference is zero, the bandwidth is not calculated.) | Input  |  |  |
| FO4 (0)                                                                                                                                                                                       | Bandwidth 1                                                                                                                                                                           | Output |  |  |
| FO4 (1)                                                                                                                                                                                       | Bandwidth 2                                                                                                                                                                           | Output |  |  |
| FO4 (2)                                                                                                                                                                                       | Bandwidth 3                                                                                                                                                                           | Output |  |  |

N: Same as FILTER 1 function.

The nominal center frequency is specified by FI1(0).





## 5.3.13 FILTER 5 Function

(1) Function

This calculates the maximum measuring value (five) within the specified range of the specified waveform memory.

(2) Style

```
Numerical value type variable name = FILTER5(N)
```

Dummy

Measuring format: The data measured by LOGOMAG (logarithmic amplitude) constitute the execution target.

| FI5 (0)                    | This specifies frequency 1 at which to start search. | Input  |  |
|----------------------------|------------------------------------------------------|--------|--|
| 115 (0)                    | Numerical value type constant                        | mput   |  |
| $\mathbf{EI5}(1)$          | This specifies frequency 1 at which to end search.   | Innut  |  |
| F13 (1)                    | Numerical value type constant                        | mput   |  |
| EI5(2)                     | This specifies frequency 2 at which to start search. | Input  |  |
| F13 (2)                    | Numerical value type constant                        |        |  |
| EI5(2)                     | This specifies frequency 2 at which to end search.   | Innut  |  |
| F13 (3)                    | Numerical value type constant                        | Input  |  |
| $\mathbf{EI5}(\mathbf{A})$ | This specifies frequency 3 at which to start search. | Turnet |  |
| F13 (4)                    | Numerical value type constant                        | Input  |  |
| EI5 (5)                    | This specifies frequency 3 at which to end search.   | Innut  |  |
| F13 (3)                    | Numerical value type constant                        | Input  |  |
| EI5 (6)                    | This specifies frequency 4 at which to start search. | Input  |  |
| F13 (0)                    | Numerical value type constant                        |        |  |
| $\mathbf{EI5}(7)$          | This specifies frequency 4 at which to end search.   | Input  |  |
| $\Gamma I J (7)$           | Numerical value type constant                        |        |  |
| $\mathbf{EI5}(9)$          | This specifies frequency 5 at which to start search. | Innut  |  |
| F13 (6)                    | Numerical value type constant                        | Input  |  |
| $\mathbf{EI5}(0)$          | This specifies frequency 5 at which to end search.   | Tarant |  |
| F13 (9)                    | Numerical value type constant                        | Input  |  |
| FO5 (0)                    | Maximum value measured 1                             | Output |  |
| FO5 (1)                    | Maximum value measured 2                             | Output |  |
| FO5 (2)                    | Maximum value measured 3                             | Output |  |
| FO5 (3)                    | Maximum value measured 4                             | Output |  |
| FO5 (4)                    | Maximum value measured 5                             | Output |  |

FI5 ( ), FO5 ( ): Numerical value type system array variables (the initial value set at zero)



## 5.3.14 GPDLY Function

(1) Function

This function is used to calculate the group delay time at the central frequency from the measurement data (magnitude of vector) and the measurement frequency.

#### (2) Format

Numerical variable=GPDLY (P0, P1, CH1, [,E])

Measurement point (lower frequency)

#### Procedure of calculation

- 1. Use the measurement and frequency data for the measurement channel designated by CH.
- 2. Read the measured values (magnitude of vector) at the measurement points designated by P0 and P1.
- 3. Convert each of the measured values to a magnitude of phase.  $\rightarrow \theta 0, \theta 1$  (deg)
- 4. Read the measurement frequencies at the measurement points designated by P0 and P1.  $\rightarrow$  f0, f1 (Hz)
- 5. The value obtained in the following calculation is defined as the group delay time.  $- (\theta \ 1-\theta \ 0) / \{360 \times (f1-f0)\} \rightarrow \tau$
- 6. Using the value designated by E, perform the following calculation and store the result in a numerical variable.  $\tau \times 10^{E} \rightarrow$  Stored in a numerical variable.

The assignment of E may be omitted. In this case, E=0 is assumed for calculation.

#### Notes:

- As the measurement data to be converted into magnitudes of phase, use the vector data in the complex measurement memory. Since this data is not yet processed according to the measurement format such as LOGMAG or PHASE, the result of this function does not depend on the measurement format. However, the measurement data compensation or manipulation due to the X-S, SMOOTHING, and SUB TRACE processing performed after the data processing according to the measurement format is not reflected in this vector data.
- If the frequency difference (f1 f0) is 0 Hz, 0 is returned as the function result.
- If the value of  $(\theta \ 1 \theta \ 0)$  is larger than 180 deg, or smaller than -180 deg, subtract or add 360 deg from/to it respectively and assume the result as the phase difference.

## 5.3.15 GST Function

(1) Function

This serializes the port of the device connected to the GPIB interface and reads out the status byte value.

(2) Style

Numerical variable=GST(G)

Device GPIB address (0 to 30)

• Effective when the GPIB port, functioning as the controller port, is in the active status.

# Section 6 Remote Control Command Used by PTA Program

| 6.1                                                      | Overview                       |                                                      |     |  |  |  |  |  |
|----------------------------------------------------------|--------------------------------|------------------------------------------------------|-----|--|--|--|--|--|
| 6.2                                                      | Remote Control Command for PTA |                                                      |     |  |  |  |  |  |
| 6.3 Method of Program Transfer Between External Personal |                                |                                                      |     |  |  |  |  |  |
|                                                          | Computer and PTA               |                                                      |     |  |  |  |  |  |
| 6.3.1 Procedures for Transferring PTA Program from Exte  |                                |                                                      |     |  |  |  |  |  |
|                                                          |                                | Personal Computer to Measuring Instrument            | 6-4 |  |  |  |  |  |
|                                                          | 6.3.2                          | Procedures for Transferring PTA Program of Measuring |     |  |  |  |  |  |
|                                                          |                                | Instrument to External Personal Computer             | 6-5 |  |  |  |  |  |

#### Section 6 Remote Control Command Used by PTA Program

## 6.1 Overview

The remote commands to control the main unit are sent within the PTA program, using the PUT statements and WRITE 1,000 statements. Moreover, the GET statements, COM statements and READ 1,000 statements are used to download the measurement parameters and measurement results from the main unit. The control commands defined by the measuring instrument and almost all the inquiry commands can be used as the remote control commands here. The remote control commands prepared for the PTA program can also be used.

#### 6.2 Remote Control Command for PTA

# 6.2 Remote Control Command for PTA

The PTA program sends remote control command style messages using WRITE 1,000 statements and READ 1,000 statements to set up the parameters on the measuring instrument unit as well as download such data from the same unit. PTA has remote control commands exclusively for itself in addition to the remote control commands for the measuring instrument.

| Function              |         | Command             | Operation                                                     |  |
|-----------------------|---------|---------------------|---------------------------------------------------------------|--|
| Port                  | Control | PORT _ 1            | This selects GPIB as the active port.                         |  |
| switching             |         | PORT _ 2            | This selects RS-232C as the active port.                      |  |
|                       |         | PORT _ 3            | This selects parallel (Centronics) as the active port.        |  |
|                       | Request | PORT?               | This requests the current active port.                        |  |
| PTL mode              |         | PTL _ 1 or          | This prompts switching to the mode where the external PC      |  |
|                       |         | CHR\$(4)            | executes the command and statement targeting the PTA program  |  |
|                       |         |                     | and where the PTA program is transferred (PTL transfer mode). |  |
| PTL transfer          | mode    | PTL _ 2             | This prompts switching to the mode where the PTA progr        |  |
|                       |         |                     | is transferred to the external PC (PTL transfer).             |  |
| PTL mode cancellation |         | PTL _ Ø or CHR\$(3) | This cancels the PTL and PTL transfer modes.                  |  |
| PTA ON/OFF            |         | PTA _ 1             | This turns PTA ON.                                            |  |
|                       |         | PTA _ Ø             | This turns PTA OFF.                                           |  |

What is PTL mode?

The PTL mode is an operation's mode for communications between the external PC and the PTA of the device. Switching to this mode means that the commands and character rows entered from the external PC are in principle interpreted as the PTA commands and statements. Therefore, the remote commands normally used for measuring control cannot be used. However, the remote command for PTL mode cancellation can be used.

Running and resetting the PTA program is possible in the PTL mode (stopping the program is not possible, though.)

# CAUTION $\triangle$

- See Chapter 4 Measuring Parameter Setup (1,000 PUT and 1,000 WRITE Statements), and Measurement Parameter/Data Downloading (1,000 GET, 1,000 COM and 1,000 READ Statements)(1), for more details of 1,000 WRITE and 1,000 READ statements.
- The WRITE, READ, LISTG, SAVEG and LOADG statements and other GPIB statements, all handled by the PTA program, are effective on ports selected for control by the control port switching function. However, this is not the case when these statements are executed as a result of the direct port designation.
- The port designated by the port switching command is not initialized when the PTA program is turned OFF.

Section 6 Remote Control Command Used by PTA Program

# 6.3 Method of Program Transfer Between External Personal Computer and PTA

Transferring the PTA program created and edited by the external personal computer to the PTA program memory mounted on the main unit is enabled using GPIB or RS-232C interface.

It is also possible to transfer the PTG program created and edited on the main unit to the external personal computer using GPIB or RS-232C interface.

The ASCII (text) format programs constitute the transfer target.

The section below explains the method of transfer in two reversed directions.

## 6.3.1 Procedures for Transferring PTA Program from External Personal Computer to Measuring Instrument

| Personal       | GPIB or RS-232C             |       | Measuring     |        |
|----------------|-----------------------------|-------|---------------|--------|
| computer       |                             |       | instrument    |        |
|                | Co                          | ontro | function: "DI | EVICE" |
|                |                             |       |               |        |
| 1. "PTA 1"     |                             | -     |               |        |
| 2. "PTL 1" o   | r CHR\$(4)                  | -     |               |        |
| 3. (1st line o | f the PTA program) end ———  |       |               |        |
| (2nd line (    | of the PTA program) end ——— | -     |               |        |
| (3rd line c    | of the PTA program) end ——— | •     |               |        |
|                | ·                           |       |               |        |
|                |                             |       |               |        |
| (Last line     | of the PTA program) end ——— |       |               |        |
| 4. "PTL 0" o   | r CHR\$(3)                  |       |               |        |
|                |                             |       |               |        |

#### Preparations

- Connect the personal computer and the measuring instrument with GPIB (RS-232C).
- Set the control function of the interface on the measuring instrument at "DEVICE."
- Set up other GPIB (RS-232C) interface conditions.

#### Execution of transfer

- (1) Turn ON PTA on the measuring instrument (PTA 1).
- (2) Turn ON the PTL mode. (PTL 1 or CHR\$(4))
- (3) Transfer the PTA program by line.
- (4) Cancel the PTL mode when the transmission of the last line is completed. (PTL 0 or CHR\$(3))

#### Note:

The remote commands entered from the external equipment while the measuring instrument is in the PTL mode are interpreted as the commands and statements to be entered to PTA. Therefore, commands such as those used to control the measuring unit result in an error.

#### 6.3 Method of Program Transfer Between External Personal Computer and PTA

## 6.3.2 Procedures for Transferring PTA Program of Measuring Instrument to External Personal Computer

| Personal computer                                                                                  | GPIB or RS-232C                                                                                                 | Measuring<br>instrument<br>Control function: "DEVICE"                                                                                            |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>"PTA 1"</li> <li>"PTL 2"</li> <li>Download</li> <li>Download</li> <li>Download</li> </ol> | ling request (GPIB)<br>ling request (GPIB)<br>ling request (GPIB)<br>ling request (GPIB)<br>ling request (GPIB) | (1st line of the PTA program) end<br>(2nd line of the PTA program) end<br>(2nd line of the PTA program) end<br>(3rd line of the PTA program) end |
| Download<br>Download<br>4. "END" en<br>5. "PTL 0" o                                                | ling request (GPIB)<br>ling request (GPIB)<br>d<br>r CHR\$(3)                                                   | (Last line of the PTA program) end                                                                                                               |

#### Preparations

- Connect the personal computer and the measuring instrument with GPIB (RS-232C).
- Set the control function of the interface on the measuring instrument at "DEVICE."
- Set up other GPIB (RS-232C) interface conditions.

#### Execution of transfer

- (1) Turn ON PTA on the measuring instrument (PTA 1).
- (2) Turn ON the PTL mode. (PTL 2)
- (3) Send the request to download the PTA program to the measuring instrument. (In this case GPIB) One line equivalent portion of the program is sent from the measuring instrument (PTA) to the computer. This process is repeated.
- (4) The character row of "END" is output finally from the measuring instrument (PTA) to the computer.
- (5) The reception of the character row of "END" prompts cancellation of the PTL mode. (PTL 0 or CHR\$(3))

Section 6 Remote Control Command Used by PTA Program
# **Section 7 External Interface at PTA**

| 7.1 | Overview                                        | 7-2 |
|-----|-------------------------------------------------|-----|
| 7.2 | 2 Selection of Interface Port Controlled by PTA |     |
| 7.3 | GPIB Function at PTA                            | 7-3 |
|     | 7.3.1 Functions as the Controller               | 7-3 |
|     | 7.3.2 Functions as the Device                   | 7-6 |
| 7.4 | Parallel (Centronics) Funciton at PTA           | 7-7 |
| 7.5 | Dual Port Memory                                |     |

Section 7 External Interface at PTA

## 7.1 Overview

This unit comes with the standard GPIB interface, as well as the following options; RS-232C interface (option 02) and parallel (Centronics) interface (option 02). These external interfaces can be controlled from PTA.

## 7.2 Selection of Interface Port Controlled by PTA

The interface port controlled by PTA is the same as the active port of the main unit function. The active port can be selected in the "ACTIVE PORT for HARD COPY" item located in the window developed from any one of the menu items, F1: GPIB, F2: RS-232C and F4: HARD COPY, displayed by pressing the LOCAL key or SHIFT, + Copy (Control) key. Switching the control function of the selected interface port into "CONTROLLER" is also required. Execute the CALL IFC sub-routine on PTA to switch the GPIB interface into the "CONTROLLER" status. No command is available to enable PTA to switch the RS-232C interface into the "CONTROLLER" status.

Moreover, the "PORT" remote control command can set up the active port.

- PORT \_ 1 Sets the active port at the GPIB port.
- PORT \_ 2 Sets the RS-232C interface as the active port.
- PORT \_ 3 Sets the parallel (Centronics) interface as the active port.

## 7.3 GPIB Function at PTA

#### 7.3.1 Functions as the Controller

#### (1) Program list output and program output

This lists up the program from the ACTIVE port currently selected by the LISTG command to the external printer. The SAVEG command also outputs the PTA program to other measuring instruments.

#### (2) IFC sending

CALL \_ IFC is used to send "Interface Clear" to the devices connected on GPIB.

#### (3) Status byte reading

GST (G) command is used to download the status byte of other devices.

#### (4) Data transmission

The WRITE statement is used to transmit data to the devices on GPIB.

WRITE L M, variable [:Format] [, Variable [:Format] ....]

Output data (character row allowed)

External device address (numerical value constant or numerical value variable used)

## CAUTION $\triangle$

When M equals 1,000, the main unit functions are set up. In this case, both controller and device modes enable operations.

#### Section 7 External Interface at PTA

#### (5) Data reception

The READ statement is used to receive data from the devices on GPIB.

READ\_M, Variable [, Variable ....]

The data received is entered to substitute the variable.

External device address (numerical value constant or numerical value variable used)

## CAUTION A

When the GPIB port is functioning as the device port, the WRITE and READ statements enable dual port memory access.

## 

Specifying a one-digit or a two-digit figure (such as 5 or 17) as the address means that the control is exercised on the devices connected to the port designated by the PORT command functioning as the GPIB command. On the other hand, specifying a three digit figure (such as 105 and 217) as the address means that the first digit indicates the port No. and the last two digits indicate the address of the device connected to the port No. indicated by the first digit. The former is called the indirect port designation, while the latter is called the direct port designation. Although the address set in accordance with the indirect port designation have no meaning to RS-232C, specifying them is necessary as a matter of formality.

#### Example:

| WRITE 5, "ABC"     | Data sending to address 5 on the active port.                            |
|--------------------|--------------------------------------------------------------------------|
| WRITE _ 105, "ABC" | Data sending to address 5 on port No. 1 (GPIB) (Direct port designation) |
| READ _ 217, AS     | Data entry from the address 17 (dummy) on port No. 2 (RS-232C)           |
|                    | (Direct port designation)                                                |

The address designation explained in the following section is effective on the WRITE, BWRITE, WWRITE, READ BREAD, WREAD, LISTG and SAVEG statements.

#### 7.3 GPIB Function at PTA

|                          | Indirect port setup     | Direct port setup    |                         |
|--------------------------|-------------------------|----------------------|-------------------------|
|                          | WRITE 5                 | WRITE 1Ø5            | WRITE 2Ø5               |
| After "DOPT 1" execution | GPIB port set as the    | GPIB port set as the | RS-232C port set as the |
|                          | active port             | active port          | active port             |
| After "DOPT 2" execution | RS-232C port set as the | GPIB port set as the | RS-232C port set as the |
|                          | active port             | active port          | active port             |

The table below shows the relation between the port designation command and active port.

#### Note 1:

Although the address designation has no meaning to RS-232C, specify the address as a matter of formality.

#### Note 2:

When a device port is specified, writing in/reading from the dual port memory are allowed. In this case, the BWRITE, WWRITE, BREAD, WREAD, LISTG and SAVEG commands and statements cannot be used.

#### (6) Time limit

Г

The time limit is set at 20 seconds (initial value). Use the GPIB commands as shown below to modify the time limit.

0 - 99999 (Unit: second) GTM 🗕 t

Setting t at zero means absence of the preset time limit (indefinite waiting).

#### (7) READ/WRITE Terminator

The GPIB terminator conditions are set as follows.

| Termir | hator f | for tal | ker ( | send | ing) |  |
|--------|---------|---------|-------|------|------|--|
|        |         |         |       |      |      |  |

| <port> instructions</port> | Terminator code                                                                     |
|----------------------------|-------------------------------------------------------------------------------------|
| < GPIB >                   | $C\mathbf{P} + \mathbf{L}\mathbf{E}$ on $\mathbf{L}\mathbf{E}$ (either one mill do) |
| WRITE                      | CR + LF  or  LF, (either one will do.)                                              |
| LISTG                      | (Follow the TRM command.)                                                           |

| *          | TRM command constitutes      |
|------------|------------------------------|
|            | a part of the GPIB commands. |
| -<br> <br> | TRM <sup>LL</sup> 1(CR + LF) |
| ł          | TRM <sup>└</sup> Ø(LF only)  |
|            | '                            |

| Terminator | for listener | (receiving) |
|------------|--------------|-------------|
|            |              |             |

| <port> instructions</port> | Terminator code                       |
|----------------------------|---------------------------------------|
| < GPIB >                   |                                       |
| READ                       | LF of $CR + LF$ (either one will do.) |

#### Section 7 External Interface at PTA

#### 7.3.2 Functions as the Device

#### (1) Service request sending

CALL \_ RSV (M) is used to send a command to request the external controller for service.



| Bit | Event name                    | Explanations                                           |
|-----|-------------------------------|--------------------------------------------------------|
| 7   | Registration error            | Error during program registration                      |
| 6   | Structure error               | Error in the program structure                         |
| 5   | Execution (calculation) error | Error in the calculation during program execution      |
| 4   | Execution (peripheral) error  | Peripheral error during program execution              |
| 3   | User definition event         |                                                        |
| 2   | User definition event         | Event the user is allowed to set at user's own will by |
| 1   | User definition event         | CALL RSV (n)                                           |
| 0   | User definition event         |                                                        |

#### 7.4 Parallel (Centronics) Funciton at PTA

## 7.4 Parallel (Centronics) Funciton at PTA

#### (1) Program list

The LISTG command is used to output the list of programs from the parallel (Centronics) port to the external printer. In this case, the parallel (Centronics) port must have been specified as the active port.

#### Section 7 External Interface at PTA

## 7.5 Dual Port Memory

#### (1) Application and structure

The dual port memory is built in PTA and enables, in a flexible manner, PTA to save and download data as well as external controller to save and download data. The dual port memory functions as a route to output the data and measurement results gained from the PTA program to the external controller, and at the same time, is used for the purpose of achieving communications between PTA and external controller.



The dual port memory comprises 32 memory block of 32 byte each in capacity. Accessing each memory block unit requires designation of the memory No. Memory Nos. 0 - 31 can be designated.

#### **Dual Port Memory Structure**

| Memory No. 0  | 32 byte |
|---------------|---------|
| Memory No. 1  | 32 byte |
| Memory No. 2  | 32 byte |
| •             | •       |
| •             | •       |
| •             | •       |
| Memory No. 30 | 32 byte |
| Memory No. 31 | 32 byte |

(2) Saving data to the dual port memory

Style

- Saving from PTA WDPM Memory No., Data to be saved or WRITE Memory No., Data to be saved
- Saving from external controller
   "PMY Memory No., Data to be saved"
- Make sure to designate the memory No. without fail before saving data to the dual port memory. Moreover, writing of data starts from the header byte of the memory block which matches the specified memory No.
- The ending code (LF) of one byte is added at the end of the data to be saved.
- When the size of the data to be saved exceeds 32 bytes, saving of the data can stretch to the next memory. Also, when the size of the data to be saved comes in 32 bytes just, the ending code is stored at the header of the next memory.

#### 7.5 Dual Port Memory

- Trying to save data of the size which goes beyond the final byte of the final memory results in an error, and the saving of the data fails. In this case, data saved before are maintained.
- The data are always stored in the ASCII format on the memory. When the data are saved from PTA, the storage size varies depending on the data type, as shown below.
  - (a) For character constant/variable
    - Saved in the ASCII format with one character set at one byte.
    - Trying to save data using the character variable without format designation results in saving of (number of bytes equivalent to the array size) + (1 byte: space code). The ending code is saved at the end.
    - Trying to save data using the character variable with uppercase format designation results in saving of onebyte worth of space code at the end of the data. The ending code is saved at the end.
    - Trying to save data using the character constant results in saving of data equivalent to the number of characters in the " ". The ending code is saved at the end.
  - (b) For numerical value variable
    - The numerical value is converted into the character row (ASCII data) and the data equivalent to the size of the character row is saved. The minus and decimal point symbols take up one-byte worth of size each. The ending code is saved at the end.
  - (c) For bit variable
    - With 1 byte/1 bit, the numerical value of 0/1 of each bit is converted into the character row (ASCII data) and the data equivalent to the size of the character row is saved.
    - The style of saving of the data with/without format designation is the same as that applicable to the case using the character variable.
    - The BWRITE and WWRITE statements cannot be used.

#### Example:

- Saving from PTA WDPM Ø, "MEASEND" : Save "MEASEND" in memory No. 0.
- Saving from the external controller "PMY Ø, MEASSTART" : Save "MEASSTART" in memory No. 0.

#### Notes:

• The WDPM statement is used exclusively for the purpose of saving data to the dual port memory.

#### Section 7 External Interface at PTA

- (3) Data downloading from the dual port memory Style
  - Downloading from PTA
     RDPM memory No., Input variable [, Input variable ..] or
     READ Memory No., Input variable [, Input variable]
  - Downloading from the external controller
     "PMY? Memory No. from which to start downloading, Number of memory units" + Downloading command
- Make sure to designate the memory No. without fail to download the data from the dual port memory. In principle, data output must be in a series leading up to the ending code (LF). However, when the data is downloaded up to the final byte of the last memory block, the data downloading is considered to have terminated.
- Trying to download the data saved over multiple memory units by specifying the memory No. located in between first and last memory units where data saving begins and ends respectively results in downloading of data from in between the data header and end.
- Data downloading from PTA in principle involves the data segment which ends with the ending code. However, when the ", " exists in data, the ", " is considered to signal the data demarcation. Therefore, the data saved into the input variable are up to the point prior to ",". In this case, specify multiple input variables. The discrepancy between the number of data segments and the number of input variables may result in a downloading error (when the number of input variables is greater than the number of data segments) or result in a situation where the data to be output remain within PTA (when the number of input variables is smaller than the number of data segments).
- Use the "PMY?" command to download data from the external controller. The "PMY?" command enables designation of the memory No. from which to start downloading and the number of memory unites to be downloaded. In this case, the data segment which starts from the header of each memory block. and ends at the ending code is output as one set of data.
- Substituting a data piece in the dual port memory for the input variable may in some cases result in a downloading error, because of the discrepancy in the data type between the substituting data and the input variable.
- The BREAD and WREAD statements cannot be used.

#### Example:

- Downloading from PTA
  - RDPM Ø, A\$ : Download data from memory No. 0 and save them as character variable A\$.
- · Downloading from the external controller
  - "PMY? Ø, 3" : Request output of three-memory unit worth of data starting from memory No. 0 (memory Nos. 0, 1 and 2). Following this, data is downloaded three times.

#### Note:

The RDPM statement is used exclusively for the purpose of downloading data from the dual port memory.

#### 7.5 Dual Port Memory

|                    | n memory contents |
|--------------------|-------------------|
| "PMY_Ø,ABC" Memory | ABC(LF)           |
| "PMY_1,123" Memory | 123(LF)           |
| "PMY_2,XYZ" Memory | XYZ(LF)           |

#### (4) Details of writing into/reading from the dual port memory

The execution statements on the left above correspond to the dual port memory contents shown on the right.

• Comma <,> in the dual port memory

The data output command comes in segments, each running from the header of the memory No. designated to the ending code. A comma <,> used is considered a part of the data segment in this case. On the other hand, as the READ statement of PTA and the controller demarcates data segments using the comma <,> to substitute data for the variable.

#### Dual port memory contents

| Memory 0 | ABC,DEF(LF) |
|----------|-------------|
| Memory 1 | XYZ(LF)     |
|          |             |
|          |             |

Execute the following statements to read the contents of the dual port memory Nos. 0 and 1 shown above.

RDPM Ø,A\$,B\$

In this case, A\$ is substituted by ABC. As the comma <,> in the data functions as the separator, DEF substitutes for B\$.

Section 7 External Interface at PTA

An error message appears when an error is encountered in the PTA command and the program. Errors are classified into two categories; fatal errors which preclude execution and warning errors which enables continuation of execution.

- Error to preclude execution (F: Fatal error) : This terminates execution of the program under any conditions.
- Error to enable continuation of execution (W: Warning error)
- : This terminates execution of the program when no error statement exists on the line following the line where an error is encountered. However, when an error statement exists, the execution of the program can continue. Moreover, the error interruption processing enables continuation of the program execution.

| 8.1 | ERRC    | OR Message Style                           | 8-2 |
|-----|---------|--------------------------------------------|-----|
| 8.2 | ERRC    | PR Statement                               | 8-3 |
| 8.3 | ERRM    | IAIN Statement                             | 8-4 |
| 8.4 | Error I | Processing Sub-Rutine                      | 8-5 |
|     | 8.4.1   | ON ERROR Statement                         | 8-5 |
|     | 8.4.2   | OFF ERROR Statement                        | 8-5 |
|     | 8.4.3   | Return from Error Processing Sub-Routine   |     |
|     |         | (RETERR, RETRY, RESUME, GIVE UP Statement) | 8-5 |
|     | 8.4.4   | Function ERRREAD (m)                       | 8-6 |
| 8.5 | Error I | List                                       | 8-7 |
|     |         |                                            |     |

## 8.1 ERROR Message Style

The error message appears in the style shown below.

ERROR Error level Error No. [, Error generation line No.]

Displayed during the program execution

#### 8.2 ERROR Statement

## 8.2 ERROR Statement

(1) Function

In case of a warning error encountered during the execution of the program, the ERROR statement enables continuation of the program execution.

```
(2) Style
```

ERROR (210, 1000)Line of the program executed next Error No.

This statement means that when the error encountered on the previous line corresponds to error No. 210, 1,000-line worth of the program can be executed.

Discordance with the error No. prompts an error message to appear to terminate the program execution.

```
(3) Example
```

- 1Ø X=Ø
- 2Ø Y=1ØØ/X
- 3Ø ERROR (21Ø,1ØØ) ; This prompts jump to line 100 in case of an error having been encountered indicating that the divisor is zero.
- 4Ø Y=Y+{5Ø

:

## 8.3 ERRMAIN Statement

(1) Function

In case of a warning error encountered during the execution of the program, the ERRMAIN statement enables branching to the main routine.

(2) Style

ERRMAIN (Error No.)

#### Example:

| 1Ø   | INPUT A       |   |                                                                                                                                                            |
|------|---------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2Ø   | GOSUB 1000    |   |                                                                                                                                                            |
| 3Ø   | :             |   |                                                                                                                                                            |
|      | :             |   |                                                                                                                                                            |
| 1ØØØ | WRITE 217, A  |   |                                                                                                                                                            |
| 1Ø1Ø | ERRMAIN (222) | ; | This prompts return to the main routine in case of an error having been encoun-<br>tered indicating that the WRITE statement is unable to output the data. |
| 1ø2ø |               |   |                                                                                                                                                            |

#### Note:

Executing the ERRMAIN statement in the routine which comes in the uppermost hierarchy results in error No. F213.

#### 8.4 Error Processing Sub-Rutine

## 8.4 Error Processing Sub-Rutine

#### 8.4.1 ON ERROR Statement

(1) Function

This registers the sub-routine for branching (interruption) in case of an error happening.

(2) Style

ON ERROR Line No. (or \* label)

When a warning error is encountered during the execution of the instructions, an interruption is generated to prompt execution of the error processing sub-routine from the line No. (or label).

#### 8.4.2 OFF ERROR Statement

(1) Function

This cancels the registration of the sub-routine for branching (interruption) in case of an error happening.

- (2) Style
  - OFF ERROR

After executing the instructions, the error interruption is not generated.

# 8.4.3 Return from Error Processing Sub-Routine (RETERR, RETRY, RESUME, GIVE UP Statement)

(1) Function

This enables return from the error interruption.

(2) Style

| RETERR | (Continuation from | the statement following the | e statement which h | nas generated an error) |
|--------|--------------------|-----------------------------|---------------------|-------------------------|
|--------|--------------------|-----------------------------|---------------------|-------------------------|

- RETRY (Continuation following the retry of the statement which has generated an error)
- RESUME (Continuation from the line specified)
- GIVEUP (Suspension of the program execution)

#### Note:

See Chapter 4 RETERR Statement and GIVE UP Statement for more details(1).

#### 8.4.4 Function ERRREAD (m)

(1) Function

This enables downloading of the error code or the line generating an error in the error processing sub-routine.

#### (2) Style V=ERRREAD(Ø) (Downloading of the error code) (Downloading of the line generating an error) V=ERRREAD(1) (3) Example 100 ON ERROR 200 ; This prompts jump to line 200 in case of an error having been encountered. 11Ø INPUT X 12Ø Y=1ØØ/X 13Ø PRINT Y 14Ø GOTO 11Ø 15Ø STOP $2\emptyset\emptyset$ C=ERRREAD ( $\emptyset$ ) 21Ø IF C=21Ø GOSUB 3ØØ ; When the divisor is zero, this prompts the display of "ERROR/0" and the execution continues from line 130. 22Ø IF C<>21Ø GIVEUP ; This suspends the program execution in case of other errors having been encountered. 23Ø RETERR 300 PRINT "ERROR/Ø" 31Ø RETURN

## 8.5 Error List

Table 8-1 shows the error No. and the cause of the error. F (Fatal) and W (Warning) in Table 8-1 refer to an error to preclude execution and an error to enable continuation of execution respectively.

| NO.       Image: constant system       F         0       The RETURN[ $\Box$ ] key has been pressed without entering the command or the statement first.       F         1       The number of symbol characters has exceeded the preset limit.       W         1       The variable name comprises greater than six characters.       W         2       Error in the numerical value constant formula       W         3       Error in the numerical value constant style       W         3       Error in the numerical value constant style       W         4       Example: $01 4.5E2$ W         5       Error in the character constant style       W         4       Error in the character constant style       W         5       Error in the format<br>Example: PRINT A:G6.2       W         6       Error in the command style (the statement cannot be interpreted.)       W         7       The statement description is insufficient.       W         8       The statement description is excessive.       W         8       The number of invariable digits has exceeded 256.       W         9       Up to 256 user defined variables can be registered.       W         10       A character which cannot be interpreted exists.       Example: $-100$ W         11                                                                                                                                                                                                      | Error | Error Contents                                                                                   | W,F |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------|-----|
| 0The RETURN[[], key has been pressed without entering the command or the statement first.F1The number of symbol characters has exceeded the preset limit.<br>The variable name comprises greater than eight characters.W2Error in the numerical value constant formula<br>Example: Ø1 4.5EE2W3Error in the numerical value constant style<br>The number of digits entered has exceeded the preset limit.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO.   |                                                                                                  |     |
| 1The number of symbol characters has exceeded the preset limit.<br>The variable name comprises greater than eight characters.<br>The program name comprises greater than six characters.W2Error in the numerical value constant formula<br>Example: $\emptyset$ 1 4.5E2W3The number of digits entered has exceeded the preset limit.<br>The value is too large or small.W4Error in the character constant style<br>Example: $AS = "ABC$ W5Error in the character constant style<br>Example: $AS = "ABC$ W6Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTO 100, 200W8The statement description is excessive.<br>Example: GOTO 100, 200W10A character which cannot be interpreted exists.<br>Example: $-100$ W11Error in the binary and hexadecimal constant style<br>Example: $B = 11.000000000$ W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0     | The RETURN[[الرب]] key has been pressed without entering the command or the statement first.     | F   |
| 1       The variable name comprises greater than eight characters.       W         2       Error in the numerical value constant formula       W         3       Error in the numerical value constant style       W         3       Error in the numerical value constant style       W         4       Error in the character constant style       W         5       Error in the format       W         5       Error in the format       W         6       Error in the command style (the statement cannot be interpreted.)       W         7       The statement description is insufficient.       W         7       The statement description is excessive.       W         8       Example: GOTO 100, 200       W         9       The number of invariable digits has exceeded 256.       W         9       A character which cannot be interpreted exists.       W         10       Acharacter which cannot be interpreted exists.       W         11       Error in the binary and hexadecimal constant style       W         12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters       W                                                                                                                                                                                                                                                                                                                                             |       | The number of symbol characters has exceeded the preset limit.                                   |     |
| The program name comprises greater than six characters.Image: Comprises greater than six characters.2Error in the numerical value constant formula<br>Example: $\emptyset$ 1 4.5EE2W3Error in the numerical value constant style<br>The number of digits entered has exceeded the preset limit.<br>The value is too large or small.W4Error in the character constant style<br>Example: $A \$ = * A B C$ W5Error in the character constant style<br>Example: $PRINT A: G6.2$ W6Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTO 1 $\emptyset\emptyset$ , 2 $\emptyset\emptyset$ W8The statement description is excessive.<br>Example: GOTO 1 $\emptyset\emptyset$ , 2 $\emptyset\emptyset$ W9WW10A character which cannot be interpreted exists.<br>Example: $-10\emptyset$ W11Error in the binary and hexadecimal constant style<br>Example: $8#=111\emptyset$ W12Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: $8#=110\emptyset$ W                                                                                                                                                                                                                                                                                                                                                                                                  | 1     | The variable name comprises greater than eight characters.                                       | W   |
| 2Error in the numerical value constant formula<br>Example: $\emptyset$ 1 4.5EE2W3Error in the numerical value constant style<br>The number of digits entered has exceeded the preset limit.<br>The value is too large or small.W4Error in the character constant style<br>Example: $A\$="ABC$ W5Error in the format<br>Example: PRINT A:G6.2W6Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTO 1 $\emptyset\emptyset$ , 2 $\emptyset\emptyset$ W8The statement description is excessive.<br>Example: GOTO 1 $\emptyset\emptyset$ , 2 $\emptyset\emptyset$ W9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10Error in the binary and hexadecimal constant style<br>Example: $-1\emptyset\emptyset$ W11Error in the binary and hexadecimal constant style<br>Example: $8\#=\#11\emptyset$ W12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: $8\#=\#11\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset$ |       | The program name comprises greater than six characters.                                          |     |
| 2       Example: Ø1 4.5EE2       W         3       Error in the numerical value constant style<br>The number of digits entered has exceeded the preset limit.<br>The value is too large or small.       W         4       Error in the character constant style<br>Example: A\$="ABC       W         5       Error in the format<br>Example: PRINT A:G6.2       W         6       Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABC       W         7       The statement description is insufficient.<br>Example: GOTO 100, 200       W         8       The statement description is excessive.<br>Example: GOTO 100, 200       W         9       The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.       W         10       A character which cannot be interpreted exists.<br>Example: -100       W         11       Error in the binary and hexadecimal constant style<br>Example: 8#=# 110       W         12       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: 8#=#10000000000       W                                                                                                                                                                                                                                          |       | Error in the numerical value constant formula                                                    |     |
| Image: Constant of the numerical value constant styleImage: Constant style3Error in the number of digits entered has exceeded the preset limit.<br>The value is too large or small.W4Error in the character constant style<br>Example: $A\$="ABC$ W5Error in the format<br>Example: PRINT A:G6.2W6Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTO 100, 200W8The statement description is excessive.<br>Example: GOTO 100, 200W9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10Error in the binary and hexadecimal constant style<br>Example: $-100$ W11Error in the binary and hexadecimal constant style<br>Example: $8\#=\# 110$ W12Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: $8\#=\#1000000000$ W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2     | Example: Ø1 4.5EE2                                                                               | W   |
| 3Error in the numerical value constant style<br>The number of digits entered has exceeded the preset limit.<br>The value is too large or small.W4Error in the character constant style<br>Example: $A S = "ABC$ W5Error in the format<br>Example: PRINT A:G6.2W6Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTO 100, 200W8The statement description is excessive.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                  |     |
| 3       The number of digits entered has exceeded the preset limit.<br>The value is too large or small.       W         4       Error in the character constant style<br>Example: A\$="ABC       W         5       Error in the format<br>Example: PRINT A:G6.2       W         6       Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABC       W         7       The statement description is insufficient.<br>Example: GOTO 100, 200       W         8       The statement description is excessive.<br>Example: GOTO 100, 200       W         9       A character which cannot be interpreted exists.<br>Example: -100       W         10       A character which cannot be interpreted exists.<br>Example: -100       W         11       Error in the binary and hexadecimal constant style<br>Example: 8#=# 110       W         12       Error in the binary and hexadecimal constant style<br>Example: Binary constant: Up to eight characters Hexadecimal constant: Up to two characters       W                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Error in the numerical value constant style                                                      |     |
| The value is too large or small.W4Error in the character constant style<br>Example: $AS="ABC$ W5Error in the format<br>Example: PRINT A:G6.2W6Error in the format<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTO 100, 200W8The statement description is excessive.<br>Example: GOTO 100, 200W9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10Error in the binary and hexadecimal constant style<br>Example: $-100$ W11Error in the binary and hexadecimal constant style<br>Example: $8#=\# 110$ W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3     | The number of digits entered has exceeded the preset limit.                                      | W   |
| Error in the character constant style<br>Example: $A\$="ABC$ W4Error in the character constant style<br>Example: $P\$="ABC$ W5Error in the format<br>Example: PRINT A:G6.2W6Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTO 100 , 200W8The statement description is excessive.<br>Example: GOTO 100 , 200W9The number of invariable digits has exceeded 256.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | The value is too large or small.                                                                 |     |
| 4Example: A\$="ABCW5Error in the format<br>Example: PRINT A:G6.2W6Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTO 1ABCW8The statement description is excessive.<br>Example: GOTO 1ØØ, 2ØØW9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10A character which cannot be interpreted exists.<br>Example: -1ØØW11Error in the binary and hexadecimal constant style<br>Example: 8#=# 11ØW12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: 8#=#100000000W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | Error in the character constant style                                                            |     |
| Image: Constant of the format<br>Example: PRINT A:G6.2W5Error in the format<br>Example: GOTO ABCW6Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTOW8The statement description is excessive.<br>Example: GOTO 100, 200W9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10A character which cannot be interpreted exists.<br>Example: -100W11Error in the binary and hexadecimal constant style<br>Example: 8#=# 110W12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: 8#=#10000000W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4     | Example: A\$="ABC                                                                                | W   |
| Error in the format<br>Example: PRINT A:G6.2W6Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTOW8The statement description is excessive.<br>Example: GOTO 100, 200W9The statement description is excessive.<br>Example: GOTO 100, 200W10A character which cannot be interpreted exists.<br>Example: -100W11Error in the binary and hexadecimal constant style<br>Example: 8#=# 110W12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to wo characters<br>Example: 8#=#100000000W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                  |     |
| 5Example: PRINT A:G6.2W6Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTOW8The statement description is excessive.<br>Example: GOTO 100, 200W9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10A character which cannot be interpreted exists.<br>Example: -100W11Error in the binary and hexadecimal constant style<br>Example: 8#=# 110W12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: 8#=#100000000W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Error in the format                                                                              |     |
| International and the second style (the statement cannot be interpreted.)Interpreted.)6Error in the command style (the statement cannot be interpreted.)W7Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTO 100, 200W8The statement description is excessive.<br>Example: GOTO 100, 200W9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10A character which cannot be interpreted exists.<br>Example: -100W11Error in the binary and hexadecimal constant style<br>Example: 8#=# 110W12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: 8#=#1000020000W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5     | Example: PRINT A:G6.2                                                                            | W   |
| 6Error in the command style (the statement cannot be interpreted.)<br>Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTOW8The statement description is excessive.<br>Example: GOTO 1ØØ, 2ØØW9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10A character which cannot be interpreted exists.<br>Example: $-1ØØ$ W11Error in the binary and hexadecimal constant style<br>Example: $8#=#11Ø$ W12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: $8#=#100000000$ W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _     | r r                                                                                              |     |
| 6Example: GOTO ABCW7The statement description is insufficient.<br>Example: GOTOW8The statement description is excessive.<br>Example: GOTO 1ØØ, 2ØØW9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10A character which cannot be interpreted exists.<br>Example: -1ØØW11Error in the binary and hexadecimal constant style<br>Example: 8#=# 11ØW12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: 8#=#100000000W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | Error in the command style (the statement cannot be interpreted.)                                |     |
| The statement description is insufficient.<br>Example: GOTOW7The statement description is excessive.<br>Example: GOTO 100, 200W8The statement description is excessive.<br>Example: GOTO 100, 200W9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10A character which cannot be interpreted exists.<br>Example: -100W11Error in the binary and hexadecimal constant style<br>Example: 8#=# 110W12Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: 8#=#100000000W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6     | Example: GOTO ABC                                                                                | W   |
| 7The statement description is insufficient.<br>Example: GOTOW8The statement description is excessive.<br>Example: GOTO 1ØØ, 2ØØW9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10A character which cannot be interpreted exists.<br>Example: -1ØØW11Error in the binary and hexadecimal constant style<br>Example: 8#=# 11ØW12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: 8#=#10ØØØØØØW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1                                                                                                |     |
| 7Example: GOTOW8The statement description is excessive.<br>Example: GOTO 1ØØ, 2ØØW9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10A character which cannot be interpreted exists.<br>Example: $-1ØØ$ W11Error in the binary and hexadecimal constant style<br>Example: $8\#=\#110$ W12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: $8\#=\#10ØØØØØØØ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | The statement description is insufficient.                                                       |     |
| 1       The statement description is excessive.       W         8       The statement description is excessive.       W         9       Example: GOTO 1ØØ, 2ØØ       W         9       The number of invariable digits has exceeded 256.       W         9       Up to 256 user defined variables can be registered.       W         10       A character which cannot be interpreted exists.       W         10       Error in the binary and hexadecimal constant style       W         11       Error in the binary and hexadecimal constant style       W         12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7     | Example: GOTO                                                                                    | W   |
| 8The statement description is excessive.<br>Example: GOTO 1ØØ, 2ØØW9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10A character which cannot be interpreted exists.<br>Example: $-1ØØ$ W11Error in the binary and hexadecimal constant style<br>Example: $8\#=\#11Ø$ W12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: $8\#=\#10ØØØØØØØ$ W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                  |     |
| 8       Example: GOTO 1ØØ, 2ØØ       W         9       The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.       W         10       A character which cannot be interpreted exists.<br>Example: -1ØØ       W         11       Error in the binary and hexadecimal constant style<br>Example: 8#=# 11Ø       W         12       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: 8#=#10ØØØØØØØØ       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | The statement description is excessive.                                                          |     |
| 1       The number of invariable digits has exceeded 256.       W         9       Up to 256 user defined variables can be registered.       W         10       A character which cannot be interpreted exists.       W         10       Example: $-1\emptyset\emptyset$ W         11       Error in the binary and hexadecimal constant style       W         12       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)       W         12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8     | Example: GOTO 1ØØ, 2ØØ                                                                           | W   |
| 9The number of invariable digits has exceeded 256.<br>Up to 256 user defined variables can be registered.W10A character which cannot be interpreted exists.<br>Example: $-1\emptyset\emptyset$ W11Error in the binary and hexadecimal constant style<br>Example: $8\#=\#11\emptyset$ W12Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: $8\#=\#10\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset$ W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 1                                                                                                |     |
| 9       Up to 256 user defined variables can be registered.       W         10       A character which cannot be interpreted exists.<br>Example: -1ØØ       W         10       Error in the binary and hexadecimal constant style<br>Example: 8#=# 11Ø       W         11       Error in the binary and hexadecimal constant style<br>Example: 8#=# 11Ø       W         12       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters<br>Example: 8#=#10ØØØØØØØØ       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | The number of invariable digits has exceeded 256.                                                |     |
| 10       A character which cannot be interpreted exists.         10       Example: $-1\emptyset\emptyset$ 11       Error in the binary and hexadecimal constant style         11       Example: $8\#=\# 11\emptyset$ W         12       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)         12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9     | Up to 256 user defined variables can be registered.                                              | W   |
| 10       A character which cannot be interpreted exists.<br>Example: -1ØØ       W         11       Error in the binary and hexadecimal constant style<br>Example: 8#=# 11Ø       W         12       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)<br>Binary constant: Up to eight characters Hexadecimal constant: Up to two characters       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                                                                  |     |
| 10       Example: -1ØØ       W         11       Error in the binary and hexadecimal constant style       W         11       Example: 8#=# 11Ø       W         12       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)       W         12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | A character which cannot be interpreted exists.                                                  |     |
| 11       Error in the binary and hexadecimal constant style       W         11       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)       W         12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters       W         12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10    | Example: $-100$                                                                                  | W   |
| Error in the binary and hexadecimal constant style       W         11       Example: 8#=# 11Ø       W         12       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)       W         12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters       W         Example: 8#=#100000000       8#=#100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1                                                                                                |     |
| 11       Example: $8\#=\# 11\emptyset$ W         12       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)       W         12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters       W         Example: $8\#=\#100000000$ W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | Error in the binary and hexadecimal constant style                                               |     |
| 12       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)         12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters         W       Example: 8#=#10000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11    | Example: $8\#=\#$ 11Ø                                                                            | W   |
| 12       Error in the binary and hexadecimal constant numerical value (The numerical value is too large.)         12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters         W       Example: 8#=#10000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                                                  |     |
| 12       Binary constant: Up to eight characters Hexadecimal constant: Up to two characters       W         Example:       8#=#100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | Error in the binary and hexadecimal constant numerical value (The numerical value is too large.) |     |
| Example: $8\#=\#100000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12    | Binary constant: Up to eight characters Hexadecimal constant: Up to two characters               | w   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | Example: 8#=#1ØØØØØØØ                                                                            |     |

| Table | 8-1 | ΡΤΑ | Error | List ( | (1/8) | ١ |
|-------|-----|-----|-------|--------|-------|---|
| Table | 0-1 |     |       | LISU   | 1/0/  | , |

| Error<br>No. | Error Contents                                                                                                                                                        | W,F |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 13           | The number of format digit is too large.<br>Example: PRINT A:F6.5                                                                                                     | W   |
| 14           | The command operand cannot be interpreted.<br>Example: LIST A, B                                                                                                      | w   |
| 15           | The number of command operands is too small.<br>Example: LISTG                                                                                                        | w   |
| 16           | The number of command operands is too large.<br>Example: DELETE 1ØØ, 1ØØ, 3ØØ                                                                                         | w   |
| 17           | The line No. has gone beyond 65535.<br>(The program line Nos. are from 1 to 65535.)                                                                                   | w   |
| 20           | Too lengthy per-line program disables assembly.                                                                                                                       | W   |
| 21           | A label whose line No. has not been defined is used for the command operand.                                                                                          | W   |
|              |                                                                                                                                                                       |     |
|              |                                                                                                                                                                       |     |
|              |                                                                                                                                                                       |     |
|              |                                                                                                                                                                       |     |
|              |                                                                                                                                                                       |     |
|              |                                                                                                                                                                       |     |
| Comment      | Error Nos. 0 - 21 are generated during command execution or command entry to the program.<br>However error Nos. 6 to 8 are also generated during statement execution. |     |

#### Table 8-1 PTA Error List (2/8)

#### 8.5 Error List

| Error<br>No. | Error Contents                                                                                                                                                  | W,F |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 101          | The command operand value is inappropriate.<br>Example: LIST 100,10                                                                                             | F   |
| 102          | The program capacity has exceeded the memory capacity.                                                                                                          | F   |
| 103          | The line No. or the program specified by the command operand is not found.<br>LIST, LISTG, DELETE, RENUM and SAVE commands                                      | F   |
| 104          | Too many GOTO and GOSUB statements have disabled RENUM execution.<br>When the number of GOTO and GOSUB statements goes beyond 100, executing RENUM is disabled. | F   |
| 105          | As the line No. specified by the GOTO and GOSUB operand is not found, executing RENUM is disabled.                                                              | F   |
|              |                                                                                                                                                                 |     |
| 111          | The line No. goes beyond 65535 when the execution of the PCOPY and RENUM commands is tried.                                                                     | F   |
|              |                                                                                                                                                                 |     |
|              |                                                                                                                                                                 |     |
|              |                                                                                                                                                                 |     |
|              |                                                                                                                                                                 |     |
|              |                                                                                                                                                                 |     |
|              |                                                                                                                                                                 |     |
| Comment      | Error Nos. 101 to 105, as well as 111, are generated during command execution.                                                                                  |     |

#### Table 8-1 PTA Error List (3/8)

| Error<br>No. | Error Contents                                                                                                            | W,F |
|--------------|---------------------------------------------------------------------------------------------------------------------------|-----|
| 120          | The media is write-protected.                                                                                             | W   |
| 121          | The media is not mounted.                                                                                                 | W   |
| 122          | The media memory has exceeded the limit.                                                                                  | W   |
| 123          | The specified program is not saved on the media.                                                                          | W   |
| 124          | The media is broken.                                                                                                      | W   |
| 125          | The memory type is different.                                                                                             | W   |
| 126          | The format type is different.                                                                                             | W   |
| 127          | The media has not been formatted.                                                                                         | W   |
|              |                                                                                                                           |     |
| 150          | The label has not been defined yet, or defined doubly.                                                                    | F   |
| 151          | No DATA statement is found.                                                                                               | F   |
|              |                                                                                                                           |     |
| 180          | The command sent from PTA to the main measuring unit erred.                                                               | W   |
| Comment      | Error Nos. 120 to 127 are generated when an error is encountered during the media access by the command or the statement. |     |

#### Table 8-1 PTA Error List (4/8)

#### 8.5 Error List

| Error<br>No. | Error Contents                                                                                                                                                                        | W,F |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 201          | The program cannot resume.<br>CONT command                                                                                                                                            | F   |
| 202          | The line No. specified is not found. RUN has been executed in the absence of a program.<br>RUN and CONT commands and GOTO and GOSUB statements                                        | W   |
| 203          | The array value is inappropriate in the DIM statement.<br>The array values are 1 to 1024.<br>(However, the bit type values are 1 to 8, while the character type values are 1 to 255.) | W   |
| 204          | Used as a simple variable or system variable before being array-declared by the DIM statement.                                                                                        | W   |
| 205          | Doubly array-declared.                                                                                                                                                                | W   |
| 206          | The variable memory runs short.<br>(Basically, the program memory has exceeded the limit.)                                                                                            | F   |
| 207          | The character data or the bit data are calculated.                                                                                                                                    | W   |
| 208          | The data types are combined in a way to reject conversion.                                                                                                                            | W   |
| 209          | Overflow or underflow. Input data is out of range.                                                                                                                                    | W   |
| 210          | The divisor is zero in the calculation.                                                                                                                                               | W   |
| 211          | The parameter value for the arithmetic function is outside the preset range.                                                                                                          | W   |
| 212          | The sub-routine or FOR and NEXT statement nesting has risen to over 10th power.                                                                                                       | F   |
| 213          | No destination for the RETURN statement return is found.                                                                                                                              | F   |
| 214          | The data types on the left and right members of the IF statement come in an incomparable combination.                                                                                 | W   |

#### Table 8-1 PTA Error List (5/8)

| Error<br>No. | Error Contents                                                                                                                                                                            | W,F |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 215          | The SOS statement has been executed.                                                                                                                                                      | F   |
| 216          | No corresponding FOR statement is found, meaning in other words too many NEXT statements.<br>RUN and CONT commands and GOTO and GOSUB statements                                          | W   |
| 217          | The input data type is wrong in the INPUT statement.                                                                                                                                      | W   |
| 218          | The input data volume runs short in the INPUT statement.                                                                                                                                  | W   |
| 219          | The input data volume has grown excessive in the INPUT statement.<br>Or too large                                                                                                         | W   |
| 220          | The code on the left member is negative in the power calculation.<br>Example: -1!15                                                                                                       | W   |
| 221          | No data can be entered on GPIB.<br>(The talker device is not connected.)                                                                                                                  | W   |
| 222          | No data can be output on GPIB.                                                                                                                                                            | W   |
| 223          | The parameter value in the statement is outside the preset range, or the variable type is inappropriate.<br>Example: WAIT A\$                                                             | W   |
| 224          | The simple variable has the array character attached.                                                                                                                                     | w   |
| 225          | The array variable has no array character attached.                                                                                                                                       | W   |
| 226          | The array character attached to the array variable exceeds the limit declared by the DIM statement.<br>Note) The scope of the character attached declared by DIM J (5) is J (0) to J (4). | W   |
| 227          | PTA cannot be executed as the device on GPIB.                                                                                                                                             | W   |
| 228          | PTA cannot be executed as the controller on GPIB.                                                                                                                                         | W   |

#### Table 8-1 PTA Error List (6/8)

#### 8.5 Error List

| Error<br>No. | Error Contents                                                                                                                                                                           | W,F |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 229          | No STOP statement to end the program execution is found.                                                                                                                                 | W   |
| 230          | A system variable unable to be referenced has been referenced.                                                                                                                           | W   |
| 231          | Substituting a value for a system variable which does not allow substitution has been tried.                                                                                             | W   |
| 232          | The character attached to the array variable is not the numerical value type.                                                                                                            | F   |
| 233          | The parameter in the logical function is not the bit type.                                                                                                                               | W   |
| 234          | The parameter in the FOR statement is the character type or the bit type.                                                                                                                | W   |
| 235          | The I/O type designation in the EVENT statement falls outside the preset range of 0 to 99.                                                                                               | W   |
| 236          | The variable symbol in the NEXT statement and the variable in the FOR statement which comes immediately before the NEXT statement are different.<br>Example: 3Ø FOR C = ···<br>9Ø NEXT D | W   |
| 237          | Six or more character variables or variables are used in the INPUT, PRINT, READ and WRITE statements.<br>Example: PRINT"FREQ", F(C), "Hz", "LEVEL", LEV "dBm"                            | W   |
| 238          | The format type and the variable type in the PRINT and WRITE statements are different.                                                                                                   | W   |
| 239          | The operand in the LISTG, WRITE and READ statements falls outside the preset range of 0 to 31.<br>Example: LISTG 35                                                                      | W   |
| 240          | The variable and constant values in CALL and system function fall outside the preset range.                                                                                              | W   |
| 241          | The variable and constant types in CALL and system function are inappropriate.                                                                                                           | W   |
| 242          | The system variable is used in CALL and the system function.                                                                                                                             | W   |

#### Table 8-1 PTA Error List (7/8)

| Error | Error Contonto                                                                                                                                                                                                                                                                                                                   |      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| No.   | Endredite                                                                                                                                                                                                                                                                                                                        | VV,F |
| 243   | The RETURN or the RETMAIN statement has been used to execute a return from the event interruption processing or error interruption processing.                                                                                                                                                                                   | F    |
| 244   | The media data file has not been opened.                                                                                                                                                                                                                                                                                         | W    |
| 245   | The media data file has already been opened.                                                                                                                                                                                                                                                                                     | W    |
| 246   | The media data file has already been entirely downloaded.                                                                                                                                                                                                                                                                        | W    |
| 247   | The media data type and the variable type cannot be converted into each other.                                                                                                                                                                                                                                                   | W    |
| 248   | The input data volume in the READ statement is excessive, or too large.                                                                                                                                                                                                                                                          | W    |
| 249   | The input data volume in the READ statement runs short.                                                                                                                                                                                                                                                                          | W    |
| 250   | The input data type in the READ statement is wrong.                                                                                                                                                                                                                                                                              | W    |
| 251   | The RETINT statement has been executed on processes other than the event interruption processing.<br>Or, although the GOSUB statement was executed during the event interruption processing, the<br>RETINT statement was executed prior to execution of the RETURN statement to execute a return.                                | F    |
| 252   | The RETERR, RETRY, RESUM and GIVEUP statements have been executed on processes other than the error interruption processing. Or, although the GOSUB statement was executed during the error interruption processing, the aforementioned statements were executed prior to execution of the RETURN statement to execute a return. | F    |
| 253   | The ERRREAD function was executed on processes other than the error interruption processing.                                                                                                                                                                                                                                     | F    |
| 254   | The STATUS function was executed on processes other than the event interruption processing.                                                                                                                                                                                                                                      | F    |
|       |                                                                                                                                                                                                                                                                                                                                  |      |
|       |                                                                                                                                                                                                                                                                                                                                  |      |

#### Table 8-1 PTA Error List (8/8)

# Section 9 PTA Parallel I/O Port Control

| 9.1 | Overview                                       | 9-2  |
|-----|------------------------------------------------|------|
| 9.2 | I/O Port Signal Explanation/Standard           | 9-2  |
| 9.3 | System Variable to Access I/O Port             | 9-5  |
| 9.4 | Interrupt by I/O Port                          | 9-7  |
| 9.5 | I/O Port Use Example                           | 9-8  |
| 9.6 | Item Name and Applicable Interface of I/O Port |      |
|     | Tangential Line                                | 9-11 |

#### Section 9 PTA Parallel I/O Port Control

### 9.1 Overview

The Personal Test Language (PTA) enables control of the PTA parallel I/O port (hereafter referred to as the I/O port). Therefore, the auto handler, trimming unit and other units can be readily connected to the I/O port to configure the Personal Test Automation (PTA) system. All the input and output signals to the I/O port adopt the negative logic.

## 9.2 I/O Port Signal Explanation/Standard

The following section explains the names of individual pins located on the I/O port connector as well as their standards.

GND (Pin No. 1)

Ground pin

```
INPUT (Pin No. 2)
```

Pulse input terminal. The internal flip-flop (F/F) of both OUTPUT 1 and OUTPUT 2 is set by this pulse input. Mainly used for measurement start executed by the external devices, INPUT checks whether the internal F/F is set in the PTA application program, and programs the application to commence the measuring routine when the internal F/F is found set. The system variable EX0 is used to check and reset the internal F/F. The pulse is pushed up to  $10 \text{ k}\Omega$  internally and input at the TTL level.

OUTPUT 1 (Pin No. 3)

Latch output terminal. OUTPUT 1 is the output of the internal F/F set by the pulse input to INPUT 1 and PTA application program. Mainly used as the status output which displays the progress of the measurement and data processing, OUTPUT 1 programs the application to reset the internal F/F when the measurement or the data processing is completed. The system variable EX0 is used to set and reset the internal F/F. Output at the TTL level. Maximum rate IOL = 24 mA, IOH = 12 mA

#### OUTPUT 2 (Pin No. 4)

Latch output terminal. OUTPUT 2 is the output of the internal F/F set by the pulse input to INPUT 1 and PTA application program. Mainly used as the status output which displays the progress of the measurement and data processing, OUTPUT 2 programs the application to reset the internal F/F when the measurement or the data processing is completed. The system variable EX0 is used to set and reset the internal F/F. Output at the TTL level. Maximum rate IOL = 24 mA, IOH = 12 mA

Output port A 0 to 7 (Pin Nos. 5 to 12)

Output port A 0 to 7 refers to the latch output terminal, which enables the program to output the 8-bit data. (synchronization signals or strobe signals cannot be output.) The system variable IOA is used to output data to output port A. The signal is pushed up to 10 k $\Omega$  internally. Output at the TTL level. Maximum rate IOL = 24 mA, IOH = 2.6 mA.

Output port B 0 to 7 (Pin Nos. 13 to 20)

Output port B 0 to 7 refers to the latch output terminal, which enables the program to output the 8-bit data. (synchronization signals or strobe signals cannot be output.) The system variable IOB is used to output data to output port B. The signal is pushed up to 10 k $\Omega$  internally. Output at the TTL level. Maximum rate IOL = 24 mA, IOH = 2.6 mA.

#### 9.2 I/O Port Signal Explanation/Standard

#### I/O port C 0 to 3 (Pin Nos. 21 to 24)

I/O port C 0 to 3 refers to the state input/latch output terminal. The I/O port performs the 4-bit as well as write strobe signal (31 pin) output. The system variable IOC is used to input and output data. The system variable EIO is used to switch the port between the input and output mode. The signal is pushed up to  $10 \text{ k}\Omega$  internally. Output at the TTL level. Maximum rate IOL = 24 mA, IOH = 2.6 mA.

I/O port D0 to 3 (Pin Nos. 25 to 28)

I/O port D 0 to 3 refers to the state input/latch output terminal. The I/O port performs the 4-bit as well as write strobe signal (31 pin) output. The system variable IOD is used to input and output data. The system variable EIO is used to switch the port between the input and output mode. The signal is pushed up to  $10 \text{ k}\Omega$  internally. Output at the TTL level. Maximum rate IOL = 24 mA, IOH = 2.6 mA.

#### Port C status (Pin No. 29)

Port C status refers to the status line which displays the mode to external devices. When the system variable EIO switches the I/O port C into the input mode, the status switches to LOW. On the other hand, when the same system variable switches the I/O port C into the output mode, the status switches to HIGH. Output at the TTL level. Maximum rate IOL = 24 mA, IOH = 12 mA

Port D status (Pin No. 30)

Port D status refers to the status line which displays the mode to external devices. When the system variable EIO switches the I/O port C into the input mode, the status switches to LOW. On the other hand, when the same system variable switches the I/O port C into the output mode, the status switches to HIGH. Output at the TTL level. Maximum rate IOL = 24 mA, IOH = 12 mA

Write strobe signal (Pin No. 31)

Pulse input terminal. The pulse is output when the data is output from either I/O port C or I/O port D. Executing the "OLDPORT" statement prompts switching of the timing of the write strobe signal pulse generation. Output at the TTL level. Maximum rate IOL = 24 mA, IOH = 12 mA.



Interruption signal (Pin No. 32)

Interruption input terminal. Entering the pulse signal to this terminal enables interruption to the PTA hardware. The signal is pushed up to 10 k $\Omega$  internally and input at the TTL level.

#### Section 9 PTA Parallel I/O Port Control

#### I/O Port Standard List

| Pin | Nerree              | Quantant                                                               | System Variable |
|-----|---------------------|------------------------------------------------------------------------|-----------------|
| No. | Name Standard       |                                                                        | Name            |
| 1   | GND                 | Ground                                                                 |                 |
| 2   | INPUT 1             | TTL level, Negative logic, Pulse Input, Pulse width of 1 µs or greater | EX0             |
| 3   | OUTPUT 1            | TTL level, Negative logic, Latch output                                | EX0             |
| 4   | OUTPUT 2            | TTL level, Negative logic, Latch output                                | EX0             |
| 5   | Output port A0      | TTL level, Negative logic, Latch output                                | IOA             |
| 6   | Output port A1      | TTL level, Negative logic, Latch output                                | IOA             |
| 7   | Output port A2      | TTL level, Negative logic, Latch output                                | IOA             |
| 8   | Output port A3      | TTL level, Negative logic, Latch output                                | IOA             |
| 9   | Output port A4      | TTL level, Negative logic, Latch output                                | IOA             |
| 10  | Output port A5      | TTL level, Negative logic, Latch output                                | IOA             |
| 11  | Output port A6      | TTL level, Negative logic, Latch output                                | IOA             |
| 12  | Output port A7      | TTL level, Negative logic, Latch output                                | IOA             |
| 13  | Output port B0      | TTL level, Negative logic, Latch output                                | IOB             |
| 14  | Output port B1      | TTL level, Negative logic, Latch output                                | IOB             |
| 15  | Output port B2      | TTL level, Negative logic, Latch output                                | IOB             |
| 16  | Output port B3      | TTL level, Negative logic, Latch output                                | IOB             |
| 17  | Output port B4      | TTL level, Negative logic, Latch output                                | IOB             |
| 18  | Output port B5      | TTL level, Negative logic, Latch output                                | IOB             |
| 19  | Output port B6      | TTL level, Negative logic, Latch output                                | IOB             |
| 20  | Output port B7      | TTL level, Negative logic, Latch output                                | IOB             |
| 21  | I/O port C0         | TTL level, Negative logic, State input/Latch output                    | IOC             |
| 22  | I/O port C1         | TTL level, Negative logic, State input/Latch output                    | IOC             |
| 23  | I/O port C2         | TTL level, Negative logic, State input/Latch output                    | IOC             |
| 24  | I/O port C3         | TTL level, Negative logic, State input/Latch output                    | IOC             |
| 25  | I/O port D0         | TTL level, Negative logic, State input/Latch output                    | IOD             |
| 26  | I/O port D1         | TTL level, Negative logic, State input/Latch output                    | IOD             |
| 27  | I/O port D2         | TTL level, Negative logic, State input/Latch output                    | IOD             |
| 28  | I/O port D3         | TTL level, Negative logic, State input/Latch output                    | IOD             |
| 29  | Port C status       | TTL level, Input mode: LOW, Output mode: High                          | EIO             |
| 30  | Port D status       | TTL level, Input mode: LOW, Output mode: High                          | EIO             |
| 31  | Write strobe signal | TTL level, Negative logic, Pulse output , Pulse width of 1 $\mu$ s     |                 |
| 32  | Interruption signal | TTL level, Negative logic, Pulse input, Pulse width 1 µs or more       |                 |
| 33  | NC                  |                                                                        |                 |
| 34  | +5 V output         | Max. 100 mA                                                            |                 |
| 35  | NC                  |                                                                        |                 |
| 36  | NC                  |                                                                        |                 |

#### Note:

NC is a non-contact terminal.

## 9.3 System Variable to Access I/O Port

Six system variables as shown below are available for the I/O port.

EXØ IOA () IOB () IOC () IOD () EIO

The section below provides explanations of these system variables. Incidentally, the "setup" and "download" in the explanations mean the data substitution for the system variable and the data downloading from the system variable respectively.

• EX0 ......... Used to execute setup of the OUTPUT 1 and OUTPUT 2 status and download of the INPUT 1 status. The EX0 variable type is the numerical value type.

The meaning of the data which execute setup/download targeting EX0 is shown by the table below.

#### Setup/Download Targeting EX0

| Data | Download          | Setup                  |
|------|-------------------|------------------------|
| 0    | Input 1 is reset. | OUTPUT 1 reset (= "H") |
| 0    |                   | OUTPUT 2 reset (= "H") |
| 1    | Input 1 is set.   | OUTPUT 1 set (= "L")   |
| 1    |                   | OUTPUT 2 reset (= "H") |
| 2    |                   | OUTPUT 1 reset (= "H") |
| 2    |                   | OUTPUT 2 set (= "L")   |
| 2    |                   | OUTPUT 1 set (= "L")   |
| 3    |                   | OUTPUT 2 set (= "L")   |

When turning power ON, tuning PTA ON or pressing the RESET key, all OUTPUT1, OUTPUT2 and INPUT 1 are reset. INPUT 1 and OUTPUT 1 are interlocked. The OUTPUT 1 status where signals are entered from the external INPUT 1 terminal is set. Resetting OUTPUT 1 switches the INPUT 1 status into the reset status.

#### Section 9 PTA Parallel I/O Port Control

- IOA ......... Used to output the 8-bit data to output port A. The IOA variable is the bit type.
- IOB ...... Used to output the 8-bit data to output port B. The IOB variable is the bit type.
- IOC ...... Used to input and output the 4-bit data at I/O port C. The IOC variable is the bit type. The system variable, EIO, switches between the input and output mode.
- IOD ......... Used to input and output the 4-bit data at I/O port D. The IOD variable is the bit type. The system variable, EIO, switches between the input and output mode.
- EIO ........... Used to set I/O ports C and D either in the input mode or output mode. The EIO variable is the numerical value type. The meaning of the data which execute setup/download targeting EIO is shown by the table below.

| Data | Setup/Download      |
|------|---------------------|
| 0    | Port C: Input mode  |
| 0    | Port D: Input mode  |
| 1    | Port C: Output mode |
| 1    | Port D: Input mode  |
| 2    | Port C: Input mode  |
| 2    | Port D: Output mode |
| 2    | Port C: Output mode |
| 5    | Port D: Output mode |

#### Setup/Download Targeting EIO

• When the power is launched, PTA is ON, and the RESET key is pressed, both ports C and D switch into the input mode.

## 9.4 Interrupt by I/O Port

Setting pin No. 32 of the I/O port at LOW causes an interrupt to be applied to PTA. When interrupts by the I/O port are enabled by the ENABLE EVENT statement, branching to the line No. defined by the ON EVENT statement is executed when an interrupt is generated. Moreover, the IOEN and ON IO GOTO (GOSUB) statements enable interrupt processing. See sections 4.2.23 to 4.2.30 for the details of the statements concerning I/O interrupts.

The measuring routine is repeatedly executed until an interrupt takes place. When an interrupt takes place, the processing moves to line 1,000. When the interrupt ends, the original measuring routine resumes.

#### Section 9 PTA Parallel I/O Port Control

## 9.5 I/O Port Use Example

#### (1) INPUT 1, OUTPUT 1 and OUTPUT 2

An example is shown below where INPUT 1 is used to enter the command to start measurements (MEAS, START), OUTPUT 1 is used to display the measurement and data processing and OUTPUT 2 is used to display the status of waiting for the measurement start.

#### <Circuit Example 1>



#### 9.5 Reality of Application

#### (2) Output port A or output port B

An example is shown below where digits are output from the 7-segment LED for numeric display connected to output port A.

#### <Circuit Example 2>



#### <Program Example 2>

A program example is shown below where every time the MEAS. START switch in <Circuit Example 1> is pressed, digits 0 - 9, one digit each at a time, are displayed.

| 10 DIM D (10)                                                               |
|-----------------------------------------------------------------------------|
| 2Ø D (Ø) =\$5C Definition of the LED segment data                           |
| 3Ø D (1) =\$06 Definition of the LED segment data                           |
| 4Ø D (2) =\$5B Definition of the LED segment data                           |
| 5Ø D (3) =\$4F Definition of the LED segment data                           |
| 6Ø D (4) =\$66 Definition of the LED segment data                           |
| 7Ø D (5) =\$6D Definition of the LED segment data                           |
| $8\emptyset$ D (6) = \$7D Definition of the LED segment data                |
| 9Ø D (7) =\$27 Definition of the LED segment data                           |
| 100 D (8) =\$7F Definition of the LED segment data                          |
| 11Ø D (9) =\$6F Definition of the LED segment data                          |
| 12Ø IOA=\$Ø                                                                 |
| 13Ø N=Ø                                                                     |
| 14Ø EXØ=Ø                                                                   |
| 15Ø C=EXØ Reading of the EXØ status                                         |
| 16Ø IF C=Ø GOTO 15Ø Checking of the MEAS.START switch having been turned ON |
| 17Ø IOA=D (N) Display output                                                |
| 18Ø N=N+1                                                                   |
| 19Ø IF N=<9 GOTO 14Ø                                                        |
| 200 STOP                                                                    |
|                                                                             |

#### Section 9 PTA Parallel I/O Port Control

#### (3) I/O port C or I/O port D

An example is shown below where switching bit 0 of I/O port C between 0 and 1 changes the processing routine.

<Circuit Example 3>



#### <Program Example 3>

Setting a switch at processing A and B and pressing the MEAS. START switch in <Circuit 1> prompt checking of PORT C and branching of the processing.

```
1Ø
      EIO=Ø
2Ø
      EX0=Ø
3Ø
      C=EXØ
      IF C=Ø GOTO 3Ø
4Ø
5Ø
      D=IOC
6Ø
      IF D=1 GOTO 200
:
     2
   Processing-A
:
:
     2
1ØØ
      STOP
2ØØ
      REM
:
     2
   Processing-B
:
:
    2
25Ø
      STOP
```
#### 9.6 Item Name and Applicable Connector of I/O Port Connector

The item name of the interface used for the I/O port is RC30-36R (manufactured by Hirose Electric). The connector which complies with the standards of this interface is RC30-36P (manufactured by Hirose Electric).



Connector pin No. array

Section 9 PTA Parallel I/O Port Control

## /inritsu

# MS4630B

## Network Analyzer Vol. 2 Remote Operation Operation Manual

Read this manual before using the equipment. Keep this manual with the equipment.

| NIS46308 NETWORK ANALYZER Vol. 2 REMOTE OPERATIO |
|--------------------------------------------------|
| NETWORK ANALYZER VOI. 2 REMOTE OPERATIC          |
| N OPERATION MANUAL                               |

## /inritsu

ANRITSU CORPORATION 5-10-27, Minamiazabu, Minato-ku, Tokyo 106-8570 Japan / Phone: 81-3-3446-1111